Metamath Proof Explorer


Theorem hashunsngx

Description: The size of the union of a set with a disjoint singleton is the extended real addition of the size of the set and 1, analogous to hashunsng . (Contributed by BTernaryTau, 9-Sep-2023)

Ref Expression
Assertion hashunsngx AVBW¬BAAB=A+𝑒1

Proof

Step Hyp Ref Expression
1 disjsn AB=¬BA
2 snfi BFin
3 hashunx AVBFinAB=AB=A+𝑒B
4 2 3 mp3an2 AVAB=AB=A+𝑒B
5 1 4 sylan2br AV¬BAAB=A+𝑒B
6 5 3adant2 AVBW¬BAAB=A+𝑒B
7 hashsng BWB=1
8 7 3ad2ant2 AVBW¬BAB=1
9 8 oveq2d AVBW¬BAA+𝑒B=A+𝑒1
10 6 9 eqtrd AVBW¬BAAB=A+𝑒1
11 10 3expia AVBW¬BAAB=A+𝑒1