Metamath Proof Explorer


Theorem hbtlem3

Description: The leading ideal function is monotone. (Contributed by Stefan O'Rear, 31-Mar-2015)

Ref Expression
Hypotheses hbtlem.p P=Poly1R
hbtlem.u U=LIdealP
hbtlem.s S=ldgIdlSeqR
hbtlem3.r φRRing
hbtlem3.i φIU
hbtlem3.j φJU
hbtlem3.ij φIJ
hbtlem3.x φX0
Assertion hbtlem3 φSIXSJX

Proof

Step Hyp Ref Expression
1 hbtlem.p P=Poly1R
2 hbtlem.u U=LIdealP
3 hbtlem.s S=ldgIdlSeqR
4 hbtlem3.r φRRing
5 hbtlem3.i φIU
6 hbtlem3.j φJU
7 hbtlem3.ij φIJ
8 hbtlem3.x φX0
9 ssrexv IJbIdeg1RbXa=coe1bXbJdeg1RbXa=coe1bX
10 7 9 syl φbIdeg1RbXa=coe1bXbJdeg1RbXa=coe1bX
11 10 ss2abdv φa|bIdeg1RbXa=coe1bXa|bJdeg1RbXa=coe1bX
12 eqid deg1R=deg1R
13 1 2 3 12 hbtlem1 RRingIUX0SIX=a|bIdeg1RbXa=coe1bX
14 4 5 8 13 syl3anc φSIX=a|bIdeg1RbXa=coe1bX
15 1 2 3 12 hbtlem1 RRingJUX0SJX=a|bJdeg1RbXa=coe1bX
16 4 6 8 15 syl3anc φSJX=a|bJdeg1RbXa=coe1bX
17 11 14 16 3sstr4d φSIXSJX