Metamath Proof Explorer


Theorem hdmap1l6

Description: Part (6) of Baer p. 47 line 6. Note that we use -. X e. ( N{ Y , Z } ) which is equivalent to Baer's "Fx i^i (Fy + Fz)" by lspdisjb . (Convert mapdh6N to use the function HDMap1 .) (Contributed by NM, 17-May-2015)

Ref Expression
Hypotheses hdmap1-6.h H = LHyp K
hdmap1-6.u U = DVecH K W
hdmap1-6.v V = Base U
hdmap1-6.p + ˙ = + U
hdmap1-6.o 0 ˙ = 0 U
hdmap1-6.n N = LSpan U
hdmap1-6.c C = LCDual K W
hdmap1-6.d D = Base C
hdmap1-6.a ˙ = + C
hdmap1-6.l L = LSpan C
hdmap1-6.m M = mapd K W
hdmap1-6.i I = HDMap1 K W
hdmap1-6.k φ K HL W H
hdmap1-6.f φ F D
hdmap1-6.x φ X V 0 ˙
hdmap1-6.y φ Y V
hdmap1-6.z φ Z V
hdmap1-6.xn φ ¬ X N Y Z
hdmap1-6.mn φ M N X = L F
Assertion hdmap1l6 φ I X F Y + ˙ Z = I X F Y ˙ I X F Z

Proof

Step Hyp Ref Expression
1 hdmap1-6.h H = LHyp K
2 hdmap1-6.u U = DVecH K W
3 hdmap1-6.v V = Base U
4 hdmap1-6.p + ˙ = + U
5 hdmap1-6.o 0 ˙ = 0 U
6 hdmap1-6.n N = LSpan U
7 hdmap1-6.c C = LCDual K W
8 hdmap1-6.d D = Base C
9 hdmap1-6.a ˙ = + C
10 hdmap1-6.l L = LSpan C
11 hdmap1-6.m M = mapd K W
12 hdmap1-6.i I = HDMap1 K W
13 hdmap1-6.k φ K HL W H
14 hdmap1-6.f φ F D
15 hdmap1-6.x φ X V 0 ˙
16 hdmap1-6.y φ Y V
17 hdmap1-6.z φ Z V
18 hdmap1-6.xn φ ¬ X N Y Z
19 hdmap1-6.mn φ M N X = L F
20 eqid - U = - U
21 eqid - C = - C
22 eqid 0 C = 0 C
23 1 2 3 4 20 5 6 7 8 9 21 22 10 11 12 13 14 15 19 16 17 18 hdmap1l6k φ I X F Y + ˙ Z = I X F Y ˙ I X F Z