Metamath Proof Explorer


Theorem hhba

Description: The base set of Hilbert space. This theorem provides an independent proof of df-hba (see comments in that definition). (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypothesis hhnv.1 U=+norm
Assertion hhba =BaseSetU

Proof

Step Hyp Ref Expression
1 hhnv.1 U=+norm
2 hilablo +AbelOp
3 ablogrpo +AbelOp+GrpOp
4 2 3 ax-mp +GrpOp
5 ax-hfvadd +:×
6 5 fdmi dom+=×
7 4 6 grporn =ran+
8 eqid BaseSetU=BaseSetU
9 1 hhva +=+vU
10 8 9 bafval BaseSetU=ran+
11 7 10 eqtr4i =BaseSetU