Metamath Proof Explorer


Theorem hhsssh2

Description: The predicate " H is a subspace of Hilbert space." (Contributed by NM, 8-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypothesis hhsssh2.1 W=+H×H×HnormH
Assertion hhsssh2 HSWNrmCVecH

Proof

Step Hyp Ref Expression
1 hhsssh2.1 W=+H×H×HnormH
2 eqid +norm=+norm
3 2 1 hhsssh HSWSubSp+normH
4 resss +H×H+
5 resss ×H
6 resss normHnorm
7 4 5 6 3pm3.2i +H×H+×HnormHnorm
8 2 hhnv +normNrmCVec
9 2 hhva +=+v+norm
10 1 hhssva +H×H=+vW
11 2 hhsm =𝑠OLD+norm
12 1 hhsssm ×H=𝑠OLDW
13 2 hhnm norm=normCV+norm
14 1 hhssnm normH=normCVW
15 eqid SubSp+norm=SubSp+norm
16 9 10 11 12 13 14 15 isssp +normNrmCVecWSubSp+normWNrmCVec+H×H+×HnormHnorm
17 8 16 ax-mp WSubSp+normWNrmCVec+H×H+×HnormHnorm
18 7 17 mpbiran2 WSubSp+normWNrmCVec
19 18 anbi1i WSubSp+normHWNrmCVecH
20 3 19 bitri HSWNrmCVecH