Metamath Proof Explorer


Theorem hlimf

Description: Function-like behavior of the convergence relation. (Contributed by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Assertion hlimf v:domv

Proof

Step Hyp Ref Expression
1 eqid +norm=+norm
2 eqid IndMet+norm=IndMet+norm
3 1 2 hhxmet IndMet+norm∞Met
4 eqid MetOpenIndMet+norm=MetOpenIndMet+norm
5 4 methaus IndMet+norm∞MetMetOpenIndMet+normHaus
6 lmfun MetOpenIndMet+normHausFuntMetOpenIndMet+norm
7 3 5 6 mp2b FuntMetOpenIndMet+norm
8 funres FuntMetOpenIndMet+normFuntMetOpenIndMet+norm
9 7 8 ax-mp FuntMetOpenIndMet+norm
10 1 2 4 hhlm v=tMetOpenIndMet+norm
11 10 funeqi FunvFuntMetOpenIndMet+norm
12 9 11 mpbir Funv
13 funfn FunvvFndomv
14 12 13 mpbi vFndomv
15 funfvbrb Funvxdomvxvvx
16 12 15 ax-mp xdomvxvvx
17 fvex vxV
18 17 hlimveci xvvxvx
19 16 18 sylbi xdomvvx
20 19 rgen xdomvvx
21 ffnfv v:domvvFndomvxdomvvx
22 14 20 21 mpbir2an v:domv