Metamath Proof Explorer


Theorem hmopbdoptHIL

Description: A Hermitian operator is a bounded linear operator (Hellinger-Toeplitz Theorem). (Contributed by NM, 18-Jan-2008) (New usage is discouraged.)

Ref Expression
Assertion hmopbdoptHIL THrmOpTBndLinOp

Proof

Step Hyp Ref Expression
1 hmoplin THrmOpTLinOp
2 hmop THrmOpxyxihTy=Txihy
3 2 3expib THrmOpxyxihTy=Txihy
4 3 ralrimivv THrmOpxyxihTy=Txihy
5 hilhl +normCHilOLD
6 df-hba =BaseSet+norm
7 eqid +norm=+norm
8 7 hhip ih=𝑖OLD+norm
9 eqid +normLnOp+norm=+normLnOp+norm
10 7 9 hhlnoi LinOp=+normLnOp+norm
11 eqid +normBLnOp+norm=+normBLnOp+norm
12 7 11 hhbloi BndLinOp=+normBLnOp+norm
13 6 8 10 12 htth +normCHilOLDTLinOpxyxihTy=TxihyTBndLinOp
14 5 13 mp3an1 TLinOpxyxihTy=TxihyTBndLinOp
15 1 4 14 syl2anc THrmOpTBndLinOp