Metamath Proof Explorer


Theorem hoi2toco

Description: The half-open interval expressed using a composition of a function into ( RR X. RR ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses hoi2toco.1 k φ
hoi2toco.c I = k X A k B k
Assertion hoi2toco φ k X . I k = k X A k B k

Proof

Step Hyp Ref Expression
1 hoi2toco.1 k φ
2 hoi2toco.c I = k X A k B k
3 2 funmpt2 Fun I
4 3 a1i φ Fun I
5 4 adantr φ k X Fun I
6 simpr φ k X k X
7 2 dmeqi dom I = dom k X A k B k
8 7 a1i φ dom I = dom k X A k B k
9 opex A k B k V
10 9 2a1i φ k X A k B k V
11 1 10 ralrimi φ k X A k B k V
12 dmmptg k X A k B k V dom k X A k B k = X
13 11 12 syl φ dom k X A k B k = X
14 8 13 eqtr2d φ X = dom I
15 14 adantr φ k X X = dom I
16 6 15 eleqtrd φ k X k dom I
17 fvco Fun I k dom I . I k = . I k
18 5 16 17 syl2anc φ k X . I k = . I k
19 9 a1i φ k X A k B k V
20 2 fvmpt2 k X A k B k V I k = A k B k
21 6 19 20 syl2anc φ k X I k = A k B k
22 21 fveq2d φ k X . I k = . A k B k
23 df-ov A k B k = . A k B k
24 23 eqcomi . A k B k = A k B k
25 24 a1i φ k X . A k B k = A k B k
26 18 22 25 3eqtrd φ k X . I k = A k B k
27 1 26 ixpeq2d φ k X . I k = k X A k B k