Metamath Proof Explorer


Theorem i1fsub

Description: The difference of two simple functions is a simple function. (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Assertion i1fsub Fdom1Gdom1FfGdom1

Proof

Step Hyp Ref Expression
1 reex V
2 i1ff Fdom1F:
3 ax-resscn
4 fss F:F:
5 2 3 4 sylancl Fdom1F:
6 i1ff Gdom1G:
7 fss G:G:
8 6 3 7 sylancl Gdom1G:
9 ofnegsub VF:G:F+f×1×fG=FfG
10 1 5 8 9 mp3an3an Fdom1Gdom1F+f×1×fG=FfG
11 simpl Fdom1Gdom1Fdom1
12 simpr Fdom1Gdom1Gdom1
13 neg1rr 1
14 13 a1i Fdom1Gdom11
15 12 14 i1fmulc Fdom1Gdom1×1×fGdom1
16 11 15 i1fadd Fdom1Gdom1F+f×1×fGdom1
17 10 16 eqeltrrd Fdom1Gdom1FfGdom1