Metamath Proof Explorer


Theorem iblsplitf

Description: A version of iblsplit using bound-variable hypotheses instead of distinct variable conditions". (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses iblsplitf.X xφ
iblsplitf.vol φvol*AB=0
iblsplitf.u φU=AB
iblsplitf.c φxUC
iblsplitf.a φxAC𝐿1
iblsplitf.b φxBC𝐿1
Assertion iblsplitf φxUC𝐿1

Proof

Step Hyp Ref Expression
1 iblsplitf.X xφ
2 iblsplitf.vol φvol*AB=0
3 iblsplitf.u φU=AB
4 iblsplitf.c φxUC
5 iblsplitf.a φxAC𝐿1
6 iblsplitf.b φxBC𝐿1
7 nfcv _yC
8 nfcsb1v _xy/xC
9 csbeq1a x=yC=y/xC
10 7 8 9 cbvmpt xUC=yUy/xC
11 simpr φyUyU
12 nfv xyU
13 1 12 nfan xφyU
14 4 adantlr φyUxUC
15 14 ex φyUxUC
16 13 15 ralrimi φyUxUC
17 rspcsbela yUxUCy/xC
18 11 16 17 syl2anc φyUy/xC
19 9 equcoms y=xC=y/xC
20 19 eqcomd y=xy/xC=C
21 8 7 20 cbvmpt yAy/xC=xAC
22 21 5 eqeltrid φyAy/xC𝐿1
23 8 7 20 cbvmpt yBy/xC=xBC
24 23 6 eqeltrid φyBy/xC𝐿1
25 2 3 18 22 24 iblsplit φyUy/xC𝐿1
26 10 25 eqeltrid φxUC𝐿1