| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexr |  | 
						
							| 2 |  | elico2 |  | 
						
							| 3 |  | elico2 |  | 
						
							| 4 | 2 3 | anbi12d |  | 
						
							| 5 | 4 | biimpd |  | 
						
							| 6 | 1 5 | sylan2 |  | 
						
							| 7 |  | simplr |  | 
						
							| 8 | 7 | recnd |  | 
						
							| 9 |  | simpll |  | 
						
							| 10 | 9 | recnd |  | 
						
							| 11 | 8 10 | negsubdi2d |  | 
						
							| 12 | 9 7 | resubcld |  | 
						
							| 13 |  | simprl1 |  | 
						
							| 14 | 13 7 | resubcld |  | 
						
							| 15 |  | simprr1 |  | 
						
							| 16 | 13 15 | resubcld |  | 
						
							| 17 |  | simprl2 |  | 
						
							| 18 | 9 13 7 17 | lesub1dd |  | 
						
							| 19 |  | simprr3 |  | 
						
							| 20 | 15 7 13 19 | ltsub2dd |  | 
						
							| 21 | 12 14 16 18 20 | lelttrd |  | 
						
							| 22 | 11 21 | eqbrtrd |  | 
						
							| 23 | 7 15 | resubcld |  | 
						
							| 24 | 7 9 | resubcld |  | 
						
							| 25 |  | simprl3 |  | 
						
							| 26 | 13 7 15 25 | ltsub1dd |  | 
						
							| 27 |  | simprr2 |  | 
						
							| 28 | 9 15 7 27 | lesub2dd |  | 
						
							| 29 | 16 23 24 26 28 | ltletrd |  | 
						
							| 30 | 16 24 | absltd |  | 
						
							| 31 | 22 29 30 | mpbir2and |  | 
						
							| 32 | 31 | ex |  | 
						
							| 33 | 6 32 | syld |  | 
						
							| 34 | 33 | imp |  |