Metamath Proof Explorer


Theorem icodiamlt

Description: Two elements in a half-open interval have separationstrictly less than the difference between the endpoints. (Contributed by Stefan O'Rear, 12-Sep-2014)

Ref Expression
Assertion icodiamlt ABCABDABCD<BA

Proof

Step Hyp Ref Expression
1 rexr BB*
2 elico2 AB*CABCACC<B
3 elico2 AB*DABDADD<B
4 2 3 anbi12d AB*CABDABCACC<BDADD<B
5 4 biimpd AB*CABDABCACC<BDADD<B
6 1 5 sylan2 ABCABDABCACC<BDADD<B
7 simplr ABCACC<BDADD<BB
8 7 recnd ABCACC<BDADD<BB
9 simpll ABCACC<BDADD<BA
10 9 recnd ABCACC<BDADD<BA
11 8 10 negsubdi2d ABCACC<BDADD<BBA=AB
12 9 7 resubcld ABCACC<BDADD<BAB
13 simprl1 ABCACC<BDADD<BC
14 13 7 resubcld ABCACC<BDADD<BCB
15 simprr1 ABCACC<BDADD<BD
16 13 15 resubcld ABCACC<BDADD<BCD
17 simprl2 ABCACC<BDADD<BAC
18 9 13 7 17 lesub1dd ABCACC<BDADD<BABCB
19 simprr3 ABCACC<BDADD<BD<B
20 15 7 13 19 ltsub2dd ABCACC<BDADD<BCB<CD
21 12 14 16 18 20 lelttrd ABCACC<BDADD<BAB<CD
22 11 21 eqbrtrd ABCACC<BDADD<BBA<CD
23 7 15 resubcld ABCACC<BDADD<BBD
24 7 9 resubcld ABCACC<BDADD<BBA
25 simprl3 ABCACC<BDADD<BC<B
26 13 7 15 25 ltsub1dd ABCACC<BDADD<BCD<BD
27 simprr2 ABCACC<BDADD<BAD
28 9 15 7 27 lesub2dd ABCACC<BDADD<BBDBA
29 16 23 24 26 28 ltletrd ABCACC<BDADD<BCD<BA
30 16 24 absltd ABCACC<BDADD<BCD<BABA<CDCD<BA
31 22 29 30 mpbir2and ABCACC<BDADD<BCD<BA
32 31 ex ABCACC<BDADD<BCD<BA
33 6 32 syld ABCABDABCD<BA
34 33 imp ABCABDABCD<BA