Metamath Proof Explorer


Theorem icoresmbl

Description: A closed-below, open-above real interval is measurable, when the bounds are real. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion icoresmbl ran.2domvol

Proof

Step Hyp Ref Expression
1 elicores xran.2yzx=yz
2 1 biimpi xran.2yzx=yz
3 simpr yzx=yzx=yz
4 simpl yzy
5 rexr zz*
6 5 adantl yzz*
7 icombl yz*yzdomvol
8 4 6 7 syl2anc yzyzdomvol
9 8 adantr yzx=yzyzdomvol
10 3 9 eqeltrd yzx=yzxdomvol
11 10 rexlimdva2 yzx=yzxdomvol
12 11 rexlimiv yzx=yzxdomvol
13 12 a1i xran.2yzx=yzxdomvol
14 2 13 mpd xran.2xdomvol
15 14 rgen xran.2xdomvol
16 dfss3 ran.2domvolxran.2xdomvol
17 15 16 mpbir ran.2domvol