Metamath Proof Explorer


Theorem idlrmulcl

Description: An ideal is closed under multiplication on the right. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses idllmulcl.1 G=1stR
idllmulcl.2 H=2ndR
idllmulcl.3 X=ranG
Assertion idlrmulcl RRingOpsIIdlRAIBXAHBI

Proof

Step Hyp Ref Expression
1 idllmulcl.1 G=1stR
2 idllmulcl.2 H=2ndR
3 idllmulcl.3 X=ranG
4 eqid GIdG=GIdG
5 1 2 3 4 isidl RRingOpsIIdlRIXGIdGIxIyIxGyIzXzHxIxHzI
6 5 biimpa RRingOpsIIdlRIXGIdGIxIyIxGyIzXzHxIxHzI
7 6 simp3d RRingOpsIIdlRxIyIxGyIzXzHxIxHzI
8 simpr zHxIxHzIxHzI
9 8 ralimi zXzHxIxHzIzXxHzI
10 9 adantl yIxGyIzXzHxIxHzIzXxHzI
11 10 ralimi xIyIxGyIzXzHxIxHzIxIzXxHzI
12 7 11 syl RRingOpsIIdlRxIzXxHzI
13 oveq1 x=AxHz=AHz
14 13 eleq1d x=AxHzIAHzI
15 oveq2 z=BAHz=AHB
16 15 eleq1d z=BAHzIAHBI
17 14 16 rspc2v AIBXxIzXxHzIAHBI
18 12 17 mpan9 RRingOpsIIdlRAIBXAHBI