Metamath Proof Explorer


Theorem iexpcyc

Description: Taking _i to the K -th power is the same as using the K mod 4 -th power instead, by i4 . (Contributed by Mario Carneiro, 7-Jul-2014)

Ref Expression
Assertion iexpcyc KiKmod4=iK

Proof

Step Hyp Ref Expression
1 zre KK
2 4re 4
3 4pos 0<4
4 2 3 elrpii 4+
5 modval K4+Kmod4=K4K4
6 1 4 5 sylancl KKmod4=K4K4
7 6 oveq2d KiKmod4=iK4K4
8 4z 4
9 4nn 4
10 nndivre K4K4
11 1 9 10 sylancl KK4
12 11 flcld KK4
13 zmulcl 4K44K4
14 8 12 13 sylancr K4K4
15 ax-icn i
16 ine0 i0
17 expsub ii0K4K4iK4K4=iKi4K4
18 15 16 17 mpanl12 K4K4iK4K4=iKi4K4
19 14 18 mpdan KiK4K4=iKi4K4
20 expmulz ii04K4i4K4=i4K4
21 15 16 20 mpanl12 4K4i4K4=i4K4
22 8 12 21 sylancr Ki4K4=i4K4
23 i4 i4=1
24 23 oveq1i i4K4=1K4
25 1exp K41K4=1
26 12 25 syl K1K4=1
27 24 26 eqtrid Ki4K4=1
28 22 27 eqtrd Ki4K4=1
29 28 oveq2d KiKi4K4=iK1
30 expclz ii0KiK
31 15 16 30 mp3an12 KiK
32 31 div1d KiK1=iK
33 29 32 eqtrd KiKi4K4=iK
34 19 33 eqtrd KiK4K4=iK
35 7 34 eqtrd KiKmod4=iK