| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubc.s |
|
| 2 |
|
imasubc.h |
|
| 3 |
|
imasubc.k |
|
| 4 |
|
imassc.f |
|
| 5 |
|
imaf1co.b |
|
| 6 |
|
imaf1co.c |
|
| 7 |
|
imaf1co.o |
|
| 8 |
|
imaf1co.f |
|
| 9 |
|
imaf1co.x |
|
| 10 |
|
imaf1co.y |
|
| 11 |
|
imaf1co.z |
|
| 12 |
|
imaf1co.m |
|
| 13 |
|
imaf1co.n |
|
| 14 |
|
eqid |
|
| 15 |
4
|
funcrcl2 |
|
| 16 |
15
|
ad4antr |
|
| 17 |
1 8 9
|
imasubc3lem1 |
|
| 18 |
17
|
simp3d |
|
| 19 |
18
|
ad4antr |
|
| 20 |
1 8 10
|
imasubc3lem1 |
|
| 21 |
20
|
simp3d |
|
| 22 |
21
|
ad4antr |
|
| 23 |
1 8 11
|
imasubc3lem1 |
|
| 24 |
23
|
simp3d |
|
| 25 |
24
|
ad4antr |
|
| 26 |
|
simp-4r |
|
| 27 |
|
simplr |
|
| 28 |
5 2 14 16 19 22 25 26 27
|
catcocl |
|
| 29 |
|
eqid |
|
| 30 |
5 2 29 4 18 24
|
funcf2 |
|
| 31 |
30
|
ad4antr |
|
| 32 |
31
|
funfvima2d |
|
| 33 |
28 32
|
mpdan |
|
| 34 |
4
|
ad4antr |
|
| 35 |
5 2 14 7 34 19 22 25 26 27
|
funcco |
|
| 36 |
17
|
simp2d |
|
| 37 |
36
|
ad4antr |
|
| 38 |
20
|
simp2d |
|
| 39 |
38
|
ad4antr |
|
| 40 |
37 39
|
opeq12d |
|
| 41 |
23
|
simp2d |
|
| 42 |
41
|
ad4antr |
|
| 43 |
40 42
|
oveq12d |
|
| 44 |
|
simpr |
|
| 45 |
|
simpllr |
|
| 46 |
43 44 45
|
oveq123d |
|
| 47 |
35 46
|
eqtr2d |
|
| 48 |
|
relfunc |
|
| 49 |
48
|
brrelex1i |
|
| 50 |
4 49
|
syl |
|
| 51 |
1 8 9 11 50 3
|
imasubc3lem2 |
|
| 52 |
51
|
ad4antr |
|
| 53 |
33 47 52
|
3eltr4d |
|
| 54 |
5 2 29 4 21 24
|
funcf2 |
|
| 55 |
54
|
ffund |
|
| 56 |
1 8 10 11 50 3
|
imasubc3lem2 |
|
| 57 |
13 56
|
eleqtrd |
|
| 58 |
|
fvelima |
|
| 59 |
55 57 58
|
syl2anc |
|
| 60 |
59
|
ad2antrr |
|
| 61 |
53 60
|
r19.29a |
|
| 62 |
5 2 29 4 18 21
|
funcf2 |
|
| 63 |
62
|
ffund |
|
| 64 |
1 8 9 10 50 3
|
imasubc3lem2 |
|
| 65 |
12 64
|
eleqtrd |
|
| 66 |
|
fvelima |
|
| 67 |
63 65 66
|
syl2anc |
|
| 68 |
61 67
|
r19.29a |
|