Metamath Proof Explorer


Theorem imasetpreimafvbijlemf

Description: Lemma for imasetpreimafvbij : the mapping H is a function into the range of function F . (Contributed by AV, 22-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p P=z|xAz=F-1Fx
fundcmpsurinj.h H=pPFp
Assertion imasetpreimafvbijlemf FFnAH:PFA

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p P=z|xAz=F-1Fx
2 fundcmpsurinj.h H=pPFp
3 1 uniimaelsetpreimafv FFnApPFpranF
4 fnima FFnAFA=ranF
5 4 adantr FFnApPFA=ranF
6 3 5 eleqtrrd FFnApPFpFA
7 6 2 fmptd FFnAH:PFA