Metamath Proof Explorer


Theorem imasmulr

Description: The ring multiplication in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by Mario Carneiro, 11-Jul-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses imasbas.u φU=F𝑠R
imasbas.v φV=BaseR
imasbas.f φF:VontoB
imasbas.r φRZ
imasmulr.p ·˙=R
imasmulr.t ˙=U
Assertion imasmulr φ˙=pVqVFpFqFp·˙q

Proof

Step Hyp Ref Expression
1 imasbas.u φU=F𝑠R
2 imasbas.v φV=BaseR
3 imasbas.f φF:VontoB
4 imasbas.r φRZ
5 imasmulr.p ·˙=R
6 imasmulr.t ˙=U
7 eqid +R=+R
8 eqid ScalarR=ScalarR
9 eqid BaseScalarR=BaseScalarR
10 eqid R=R
11 eqid 𝑖R=𝑖R
12 eqid TopOpenR=TopOpenR
13 eqid distR=distR
14 eqid R=R
15 eqid +U=+U
16 1 2 3 4 7 15 imasplusg φ+U=pVqVFpFqFp+Rq
17 eqidd φpVqVFpFqFp·˙q=pVqVFpFqFp·˙q
18 eqidd φqVpBaseScalarR,xFqFpRq=qVpBaseScalarR,xFqFpRq
19 eqidd φpVqVFpFqp𝑖Rq=pVqVFpFqp𝑖Rq
20 eqidd φTopOpenRqTopF=TopOpenRqTopF
21 eqid distU=distU
22 1 2 3 4 13 21 imasds φdistU=xB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*distRg*<
23 eqidd φFRF-1=FRF-1
24 1 2 7 5 8 9 10 11 12 13 14 16 17 18 19 20 22 23 3 4 imasval φU=BasendxB+ndx+UndxpVqVFpFqFp·˙qScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU
25 eqid BasendxB+ndx+UndxpVqVFpFqFp·˙qScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU=BasendxB+ndx+UndxpVqVFpFqFp·˙qScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU
26 25 imasvalstr BasendxB+ndx+UndxpVqVFpFqFp·˙qScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistUStruct112
27 mulridx 𝑟=Slotndx
28 snsstp3 ndxpVqVFpFqFp·˙qBasendxB+ndx+UndxpVqVFpFqFp·˙q
29 ssun1 BasendxB+ndx+UndxpVqVFpFqFp·˙qBasendxB+ndx+UndxpVqVFpFqFp·˙qScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖Rq
30 28 29 sstri ndxpVqVFpFqFp·˙qBasendxB+ndx+UndxpVqVFpFqFp·˙qScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖Rq
31 ssun1 BasendxB+ndx+UndxpVqVFpFqFp·˙qScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqBasendxB+ndx+UndxpVqVFpFqFp·˙qScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU
32 30 31 sstri ndxpVqVFpFqFp·˙qBasendxB+ndx+UndxpVqVFpFqFp·˙qScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU
33 fvex BaseRV
34 2 33 eqeltrdi φVV
35 snex FpFqFp·˙qV
36 35 rgenw qVFpFqFp·˙qV
37 iunexg VVqVFpFqFp·˙qVqVFpFqFp·˙qV
38 34 36 37 sylancl φqVFpFqFp·˙qV
39 38 ralrimivw φpVqVFpFqFp·˙qV
40 iunexg VVpVqVFpFqFp·˙qVpVqVFpFqFp·˙qV
41 34 39 40 syl2anc φpVqVFpFqFp·˙qV
42 24 26 27 32 41 6 strfv3 φ˙=pVqVFpFqFp·˙q