Metamath Proof Explorer


Theorem imasubc3lem1

Description: Lemma for imasubc3 . (Contributed by Zhi Wang, 7-Nov-2025)

Ref Expression
Hypotheses imasubc3lem1.s S = F A
imasubc3lem1.f φ F : B 1-1 C
imasubc3lem1.x φ X S
Assertion imasubc3lem1 φ F -1 X = F -1 X F F -1 X = X F -1 X B

Proof

Step Hyp Ref Expression
1 imasubc3lem1.s S = F A
2 imasubc3lem1.f φ F : B 1-1 C
3 imasubc3lem1.x φ X S
4 f1f1orn F : B 1-1 C F : B 1-1 onto ran F
5 2 4 syl φ F : B 1-1 onto ran F
6 dff1o4 F : B 1-1 onto ran F F Fn B F -1 Fn ran F
7 6 simprbi F : B 1-1 onto ran F F -1 Fn ran F
8 5 7 syl φ F -1 Fn ran F
9 imassrn F A ran F
10 3 1 eleqtrdi φ X F A
11 9 10 sselid φ X ran F
12 fnsnfv F -1 Fn ran F X ran F F -1 X = F -1 X
13 8 11 12 syl2anc φ F -1 X = F -1 X
14 f1ocnvfv2 F : B 1-1 onto ran F X ran F F F -1 X = X
15 5 11 14 syl2anc φ F F -1 X = X
16 f1ocnvdm F : B 1-1 onto ran F X ran F F -1 X B
17 5 11 16 syl2anc φ F -1 X B
18 13 15 17 3jca φ F -1 X = F -1 X F F -1 X = X F -1 X B