Metamath Proof Explorer


Theorem imcn2

Description: The imaginary part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014)

Ref Expression
Assertion imcn2 Ax+y+zzA<yzA<x

Proof

Step Hyp Ref Expression
1 imf :
2 ax-resscn
3 fss ::
4 1 2 3 mp2an :
5 imsub zAzA=zA
6 5 fveq2d zAzA=zA
7 subcl zAzA
8 absimle zAzAzA
9 7 8 syl zAzAzA
10 6 9 eqbrtrrd zAzAzA
11 4 10 cn1lem Ax+y+zzA<yzA<x