Metamath Proof Explorer


Theorem indifdirOLD

Description: Obsolete version of indifdir as of 14-Aug-2024. (Contributed by Scott Fenton, 14-Apr-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion indifdirOLD ABC=ACBC

Proof

Step Hyp Ref Expression
1 pm3.24 ¬xC¬xC
2 1 intnan ¬xAxC¬xC
3 anass xAxC¬xCxAxC¬xC
4 2 3 mtbir ¬xAxC¬xC
5 4 biorfi xAxC¬xBxAxC¬xBxAxC¬xC
6 an32 xA¬xBxCxAxC¬xB
7 andi xAxC¬xB¬xCxAxC¬xBxAxC¬xC
8 5 6 7 3bitr4i xA¬xBxCxAxC¬xB¬xC
9 ianor ¬xBxC¬xB¬xC
10 9 anbi2i xAxC¬xBxCxAxC¬xB¬xC
11 8 10 bitr4i xA¬xBxCxAxC¬xBxC
12 elin xABCxABxC
13 eldif xABxA¬xB
14 13 anbi1i xABxCxA¬xBxC
15 12 14 bitri xABCxA¬xBxC
16 eldif xACBCxAC¬xBC
17 elin xACxAxC
18 elin xBCxBxC
19 18 notbii ¬xBC¬xBxC
20 17 19 anbi12i xAC¬xBCxAxC¬xBxC
21 16 20 bitri xACBCxAxC¬xBxC
22 11 15 21 3bitr4i xABCxACBC
23 22 eqriv ABC=ACBC