Metamath Proof Explorer


Theorem indisconn

Description: The indiscrete topology (or trivial topology) on any set is connected. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion indisconn AConn

Proof

Step Hyp Ref Expression
1 indistop ATop
2 inss1 AClsdAA
3 indislem IA=A
4 2 3 sseqtrri AClsdAIA
5 indisuni IA=A
6 5 isconn2 AConnATopAClsdAIA
7 1 4 6 mpbir2an AConn