Description: An indiscrete category in which all hom-sets have exactly one morphism is a thin category. Constructed here is an indiscrete category where all morphisms are (/) . This is a special case of prsthinc , where .<_ = ( B X. B ) . This theorem also implies a functor from the category of sets to the category of small categories. (Contributed by Zhi Wang, 17-Sep-2024) (Proof shortened by Zhi Wang, 19-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | indthinc.b | |
|
indthinc.h | |
||
indthinc.o | |
||
indthinc.c | |
||
Assertion | indthinc | Could not format assertion : No typesetting found for |- ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) with typecode |- |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indthinc.b | |
|
2 | indthinc.h | |
|
3 | indthinc.o | |
|
4 | indthinc.c | |
|
5 | eqidd | |
|
6 | 5 | f1omo | |
7 | df-ov | |
|
8 | 7 | eleq2i | |
9 | 8 | mobii | |
10 | 6 9 | sylibr | |
11 | biid | |
|
12 | id | |
|
13 | 12 | ancli | |
14 | 1oex | |
|
15 | 14 | ovconst2 | |
16 | 0lt1o | |
|
17 | eleq2 | |
|
18 | 16 17 | mpbiri | |
19 | 13 15 18 | 3syl | |
20 | 19 | adantl | |
21 | 16 | a1i | |
22 | 0ov | |
|
23 | 22 | oveqi | |
24 | 0ov | |
|
25 | 23 24 | eqtri | |
26 | 25 | a1i | |
27 | 14 | ovconst2 | |
28 | 27 | 3adant2 | |
29 | 21 26 28 | 3eltr4d | |
30 | 29 | ad2antrl | |
31 | 1 2 10 3 4 11 20 30 | isthincd2 | Could not format ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) : No typesetting found for |- ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) with typecode |- |