Metamath Proof Explorer


Theorem indthinc

Description: An indiscrete category in which all hom-sets have exactly one morphism is a thin category. Constructed here is an indiscrete category where all morphisms are (/) . This is a special case of prsthinc , where .<_ = ( B X. B ) . This theorem also implies a functor from the category of sets to the category of small categories. (Contributed by Zhi Wang, 17-Sep-2024) (Proof shortened by Zhi Wang, 19-Sep-2024)

Ref Expression
Hypotheses indthinc.b φB=BaseC
indthinc.h φB×B×1𝑜=HomC
indthinc.o φ=compC
indthinc.c φCV
Assertion indthinc Could not format assertion : No typesetting found for |- ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 indthinc.b φB=BaseC
2 indthinc.h φB×B×1𝑜=HomC
3 indthinc.o φ=compC
4 indthinc.c φCV
5 eqidd φxByBB×B×1𝑜=B×B×1𝑜
6 5 f1omo φxByB*ffB×B×1𝑜xy
7 df-ov xB×B×1𝑜y=B×B×1𝑜xy
8 7 eleq2i fxB×B×1𝑜yfB×B×1𝑜xy
9 8 mobii *ffxB×B×1𝑜y*ffB×B×1𝑜xy
10 6 9 sylibr φxByB*ffxB×B×1𝑜y
11 biid xByBzBfxB×B×1𝑜ygyB×B×1𝑜zxByBzBfxB×B×1𝑜ygyB×B×1𝑜z
12 id yByB
13 12 ancli yByByB
14 1oex 1𝑜V
15 14 ovconst2 yByByB×B×1𝑜y=1𝑜
16 0lt1o 1𝑜
17 eleq2 yB×B×1𝑜y=1𝑜yB×B×1𝑜y1𝑜
18 16 17 mpbiri yB×B×1𝑜y=1𝑜yB×B×1𝑜y
19 13 15 18 3syl yByB×B×1𝑜y
20 19 adantl φyByB×B×1𝑜y
21 16 a1i xByBzB1𝑜
22 0ov xyz=
23 22 oveqi gxyzf=gf
24 0ov gf=
25 23 24 eqtri gxyzf=
26 25 a1i xByBzBgxyzf=
27 14 ovconst2 xBzBxB×B×1𝑜z=1𝑜
28 27 3adant2 xByBzBxB×B×1𝑜z=1𝑜
29 21 26 28 3eltr4d xByBzBgxyzfxB×B×1𝑜z
30 29 ad2antrl φxByBzBfxB×B×1𝑜ygyB×B×1𝑜zgxyzfxB×B×1𝑜z
31 1 2 10 3 4 11 20 30 isthincd2 Could not format ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) : No typesetting found for |- ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) with typecode |-