Metamath Proof Explorer


Theorem inf3lemd

Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)

Ref Expression
Hypotheses inf3lem.1 G=yVwx|wxy
inf3lem.2 F=recGω
inf3lem.3 AV
inf3lem.4 BV
Assertion inf3lemd AωFAx

Proof

Step Hyp Ref Expression
1 inf3lem.1 G=yVwx|wxy
2 inf3lem.2 F=recGω
3 inf3lem.3 AV
4 inf3lem.4 BV
5 fveq2 A=FA=F
6 1 2 3 4 inf3lemb F=
7 5 6 eqtrdi A=FA=
8 0ss x
9 7 8 eqsstrdi A=FAx
10 9 a1d A=AωFAx
11 nnsuc AωAvωA=sucv
12 vex vV
13 1 2 12 4 inf3lemc vωFsucv=GFv
14 13 eleq2d vωuFsucvuGFv
15 vex uV
16 fvex FvV
17 1 2 15 16 inf3lema uGFvuxuxFv
18 17 simplbi uGFvux
19 14 18 syl6bi vωuFsucvux
20 19 ssrdv vωFsucvx
21 fveq2 A=sucvFA=Fsucv
22 21 sseq1d A=sucvFAxFsucvx
23 20 22 syl5ibrcom vωA=sucvFAx
24 23 rexlimiv vωA=sucvFAx
25 11 24 syl AωAFAx
26 25 expcom AAωFAx
27 10 26 pm2.61ine AωFAx