Metamath Proof Explorer


Theorem infcvgaux1i

Description: Auxiliary theorem for applications of supcvg . Hypothesis for several supremum theorems. (Contributed by NM, 8-Feb-2008)

Ref Expression
Hypotheses infcvg.1 R=x|yXx=A
infcvg.2 yXA
infcvg.3 ZX
infcvg.4 zwRwz
Assertion infcvgaux1i RRzwRwz

Proof

Step Hyp Ref Expression
1 infcvg.1 R=x|yXx=A
2 infcvg.2 yXA
3 infcvg.3 ZX
4 infcvg.4 zwRwz
5 2 renegcld yXA
6 eleq1 x=AxA
7 5 6 syl5ibrcom yXx=Ax
8 7 rexlimiv yXx=Ax
9 8 abssi x|yXx=A
10 1 9 eqsstri R
11 eqid Z/yA=Z/yA
12 11 nfth yZ/yA=Z/yA
13 csbeq1a y=ZA=Z/yA
14 13 negeqd y=ZA=Z/yA
15 14 eqeq2d y=ZZ/yA=AZ/yA=Z/yA
16 12 15 rspce ZXZ/yA=Z/yAyXZ/yA=A
17 3 11 16 mp2an yXZ/yA=A
18 negex Z/yAV
19 nfcsb1v _yZ/yA
20 19 nfneg _yZ/yA
21 20 nfeq2 yx=Z/yA
22 eqeq1 x=Z/yAx=AZ/yA=A
23 21 22 rexbid x=Z/yAyXx=AyXZ/yA=A
24 18 23 elab Z/yAx|yXx=AyXZ/yA=A
25 17 24 mpbir Z/yAx|yXx=A
26 25 1 eleqtrri Z/yAR
27 26 ne0ii R
28 10 27 4 3pm3.2i RRzwRwz