Description: Auxiliary theorem for applications of supcvg . Hypothesis for several supremum theorems. (Contributed by NM, 8-Feb-2008)
Ref | Expression | ||
---|---|---|---|
Hypotheses | infcvg.1 | |
|
infcvg.2 | |
||
infcvg.3 | |
||
infcvg.4 | |
||
Assertion | infcvgaux1i | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infcvg.1 | |
|
2 | infcvg.2 | |
|
3 | infcvg.3 | |
|
4 | infcvg.4 | |
|
5 | 2 | renegcld | |
6 | eleq1 | |
|
7 | 5 6 | syl5ibrcom | |
8 | 7 | rexlimiv | |
9 | 8 | abssi | |
10 | 1 9 | eqsstri | |
11 | eqid | |
|
12 | 11 | nfth | |
13 | csbeq1a | |
|
14 | 13 | negeqd | |
15 | 14 | eqeq2d | |
16 | 12 15 | rspce | |
17 | 3 11 16 | mp2an | |
18 | negex | |
|
19 | nfcsb1v | |
|
20 | 19 | nfneg | |
21 | 20 | nfeq2 | |
22 | eqeq1 | |
|
23 | 21 22 | rexbid | |
24 | 18 23 | elab | |
25 | 17 24 | mpbir | |
26 | 25 1 | eleqtrri | |
27 | 26 | ne0ii | |
28 | 10 27 4 | 3pm3.2i | |