| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supcvg.1 |
|
| 2 |
|
supcvg.2 |
|
| 3 |
|
supcvg.3 |
|
| 4 |
|
supcvg.4 |
|
| 5 |
|
supcvg.5 |
|
| 6 |
|
supcvg.6 |
|
| 7 |
|
supcvg.7 |
|
| 8 |
|
oveq2 |
|
| 9 |
8
|
oveq2d |
|
| 10 |
|
ovex |
|
| 11 |
9 3 10
|
fvmpt |
|
| 12 |
11
|
adantl |
|
| 13 |
|
fof |
|
| 14 |
5 13
|
syl |
|
| 15 |
|
feq3 |
|
| 16 |
14 15
|
syl5ibcom |
|
| 17 |
|
f00 |
|
| 18 |
17
|
simprbi |
|
| 19 |
16 18
|
syl6 |
|
| 20 |
19
|
necon3d |
|
| 21 |
4 20
|
mpd |
|
| 22 |
6 21 7
|
suprcld |
|
| 23 |
2 22
|
eqeltrid |
|
| 24 |
|
nnrp |
|
| 25 |
24
|
rpreccld |
|
| 26 |
|
ltsubrp |
|
| 27 |
23 25 26
|
syl2an |
|
| 28 |
12 27
|
eqbrtrd |
|
| 29 |
28 2
|
breqtrdi |
|
| 30 |
6 21 7
|
3jca |
|
| 31 |
|
nnrecre |
|
| 32 |
|
resubcl |
|
| 33 |
23 31 32
|
syl2an |
|
| 34 |
33 3
|
fmptd |
|
| 35 |
34
|
ffvelcdmda |
|
| 36 |
|
suprlub |
|
| 37 |
30 35 36
|
syl2an2r |
|
| 38 |
29 37
|
mpbid |
|
| 39 |
6
|
adantr |
|
| 40 |
39
|
sselda |
|
| 41 |
|
ltle |
|
| 42 |
35 40 41
|
syl2an2r |
|
| 43 |
42
|
reximdva |
|
| 44 |
38 43
|
mpd |
|
| 45 |
|
forn |
|
| 46 |
5 45
|
syl |
|
| 47 |
46
|
rexeqdv |
|
| 48 |
|
ffn |
|
| 49 |
|
breq2 |
|
| 50 |
49
|
rexrn |
|
| 51 |
14 48 50
|
3syl |
|
| 52 |
47 51
|
bitr3d |
|
| 53 |
52
|
adantr |
|
| 54 |
44 53
|
mpbid |
|
| 55 |
54
|
ralrimiva |
|
| 56 |
|
nnenom |
|
| 57 |
|
fveq2 |
|
| 58 |
57
|
breq2d |
|
| 59 |
1 56 58
|
axcc4 |
|
| 60 |
55 59
|
syl |
|
| 61 |
|
nnuz |
|
| 62 |
|
1zzd |
|
| 63 |
|
1zzd |
|
| 64 |
23
|
recnd |
|
| 65 |
|
1z |
|
| 66 |
61
|
eqimss2i |
|
| 67 |
|
nnex |
|
| 68 |
66 67
|
climconst2 |
|
| 69 |
64 65 68
|
sylancl |
|
| 70 |
67
|
mptex |
|
| 71 |
3 70
|
eqeltri |
|
| 72 |
71
|
a1i |
|
| 73 |
|
ax-1cn |
|
| 74 |
|
divcnv |
|
| 75 |
73 74
|
mp1i |
|
| 76 |
|
fvconst2g |
|
| 77 |
23 76
|
sylan |
|
| 78 |
64
|
adantr |
|
| 79 |
77 78
|
eqeltrd |
|
| 80 |
|
eqid |
|
| 81 |
|
ovex |
|
| 82 |
8 80 81
|
fvmpt |
|
| 83 |
82
|
adantl |
|
| 84 |
|
nnrecre |
|
| 85 |
84
|
recnd |
|
| 86 |
85
|
adantl |
|
| 87 |
83 86
|
eqeltrd |
|
| 88 |
77 83
|
oveq12d |
|
| 89 |
12 88
|
eqtr4d |
|
| 90 |
61 63 69 72 75 79 87 89
|
climsub |
|
| 91 |
64
|
subid1d |
|
| 92 |
90 91
|
breqtrd |
|
| 93 |
92
|
ad2antrr |
|
| 94 |
14
|
ad2antrr |
|
| 95 |
|
fex |
|
| 96 |
94 1 95
|
sylancl |
|
| 97 |
|
vex |
|
| 98 |
|
coexg |
|
| 99 |
96 97 98
|
sylancl |
|
| 100 |
34
|
ad2antrr |
|
| 101 |
100
|
ffvelcdmda |
|
| 102 |
14 6
|
fssd |
|
| 103 |
|
fco |
|
| 104 |
102 103
|
sylan |
|
| 105 |
104
|
adantr |
|
| 106 |
105
|
ffvelcdmda |
|
| 107 |
|
fveq2 |
|
| 108 |
|
2fveq3 |
|
| 109 |
107 108
|
breq12d |
|
| 110 |
109
|
rspccva |
|
| 111 |
110
|
adantll |
|
| 112 |
|
simplr |
|
| 113 |
|
fvco3 |
|
| 114 |
112 113
|
sylan |
|
| 115 |
111 114
|
breqtrrd |
|
| 116 |
30
|
ad3antrrr |
|
| 117 |
112
|
ffvelcdmda |
|
| 118 |
94
|
ffvelcdmda |
|
| 119 |
117 118
|
syldan |
|
| 120 |
|
suprub |
|
| 121 |
116 119 120
|
syl2anc |
|
| 122 |
121 2
|
breqtrrdi |
|
| 123 |
114 122
|
eqbrtrd |
|
| 124 |
61 62 93 99 101 106 115 123
|
climsqz |
|
| 125 |
124
|
ex |
|
| 126 |
125
|
imdistanda |
|
| 127 |
126
|
eximdv |
|
| 128 |
60 127
|
mpd |
|