Metamath Proof Explorer


Theorem infxpen

Description: Every infinite ordinal is equinumerous to its Cartesian square. Proposition 10.39 of TakeutiZaring p. 94, whose proof we follow closely. The key idea is to show that the relation R is a well-ordering of ( On X. On ) with the additional property that R -initial segments of ( x X. x ) (where x is a limit ordinal) are of cardinality at most x . (Contributed by Mario Carneiro, 9-Mar-2013) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion infxpen AOnωAA×AA

Proof

Step Hyp Ref Expression
1 eqid xy|xOn×OnyOn×On1stx1sty1stx=1sty2ndx2ndy=xy|xOn×OnyOn×On1stx1sty1stx=1sty2ndx2ndy
2 eleq1w s=zsOn×OnzOn×On
3 eleq1w t=wtOn×OnwOn×On
4 2 3 bi2anan9 s=zt=wsOn×OntOn×OnzOn×OnwOn×On
5 fveq2 s=z1sts=1stz
6 fveq2 s=z2nds=2ndz
7 5 6 uneq12d s=z1sts2nds=1stz2ndz
8 7 adantr s=zt=w1sts2nds=1stz2ndz
9 fveq2 t=w1stt=1stw
10 fveq2 t=w2ndt=2ndw
11 9 10 uneq12d t=w1stt2ndt=1stw2ndw
12 11 adantl s=zt=w1stt2ndt=1stw2ndw
13 8 12 eleq12d s=zt=w1sts2nds1stt2ndt1stz2ndz1stw2ndw
14 7 11 eqeqan12d s=zt=w1sts2nds=1stt2ndt1stz2ndz=1stw2ndw
15 breq12 s=zt=wsxy|xOn×OnyOn×On1stx1sty1stx=1sty2ndx2ndytzxy|xOn×OnyOn×On1stx1sty1stx=1sty2ndx2ndyw
16 14 15 anbi12d s=zt=w1sts2nds=1stt2ndtsxy|xOn×OnyOn×On1stx1sty1stx=1sty2ndx2ndyt1stz2ndz=1stw2ndwzxy|xOn×OnyOn×On1stx1sty1stx=1sty2ndx2ndyw
17 13 16 orbi12d s=zt=w1sts2nds1stt2ndt1sts2nds=1stt2ndtsxy|xOn×OnyOn×On1stx1sty1stx=1sty2ndx2ndyt1stz2ndz1stw2ndw1stz2ndz=1stw2ndwzxy|xOn×OnyOn×On1stx1sty1stx=1sty2ndx2ndyw
18 4 17 anbi12d s=zt=wsOn×OntOn×On1sts2nds1stt2ndt1sts2nds=1stt2ndtsxy|xOn×OnyOn×On1stx1sty1stx=1sty2ndx2ndytzOn×OnwOn×On1stz2ndz1stw2ndw1stz2ndz=1stw2ndwzxy|xOn×OnyOn×On1stx1sty1stx=1sty2ndx2ndyw
19 18 cbvopabv st|sOn×OntOn×On1sts2nds1stt2ndt1sts2nds=1stt2ndtsxy|xOn×OnyOn×On1stx1sty1stx=1sty2ndx2ndyt=zw|zOn×OnwOn×On1stz2ndz1stw2ndw1stz2ndz=1stw2ndwzxy|xOn×OnyOn×On1stx1sty1stx=1sty2ndx2ndyw
20 eqid st|sOn×OntOn×On1sts2nds1stt2ndt1sts2nds=1stt2ndtsxy|xOn×OnyOn×On1stx1sty1stx=1sty2ndx2ndyta×a×a×a=st|sOn×OntOn×On1sts2nds1stt2ndt1sts2nds=1stt2ndtsxy|xOn×OnyOn×On1stx1sty1stx=1sty2ndx2ndyta×a×a×a
21 biid aOnmaωmm×mmωamamaaOnmaωmm×mmωamama
22 eqid 1stw2ndw=1stw2ndw
23 eqid OrdIsost|sOn×OntOn×On1sts2nds1stt2ndt1sts2nds=1stt2ndtsxy|xOn×OnyOn×On1stx1sty1stx=1sty2ndx2ndyta×a×a×aa×a=OrdIsost|sOn×OntOn×On1sts2nds1stt2ndt1sts2nds=1stt2ndtsxy|xOn×OnyOn×On1stx1sty1stx=1sty2ndx2ndyta×a×a×aa×a
24 1 19 20 21 22 23 infxpenlem AOnωAA×AA