Description: Lemma for infxpenc2 . (Contributed by Mario Carneiro, 30-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | infxpenc2.1 | |
|
infxpenc2.2 | |
||
infxpenc2.3 | |
||
Assertion | infxpenc2lem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infxpenc2.1 | |
|
2 | infxpenc2.2 | |
|
3 | infxpenc2.3 | |
|
4 | 2 | r19.21bi | |
5 | 4 | impr | |
6 | simpr | |
|
7 | oveq2 | |
|
8 | eqid | |
|
9 | ovex | |
|
10 | 7 8 9 | fvmpt | |
11 | 10 | ad2antrl | |
12 | f1ofo | |
|
13 | 12 | ad2antll | |
14 | forn | |
|
15 | 13 14 | syl | |
16 | 11 15 | eqtr4d | |
17 | ovex | |
|
18 | 17 | 2a1i | |
19 | omelon | |
|
20 | 1onn | |
|
21 | ondif2 | |
|
22 | 19 20 21 | mpbir2an | |
23 | eldifi | |
|
24 | 23 | ad2antrl | |
25 | eldifi | |
|
26 | 25 | ad2antll | |
27 | oecan | |
|
28 | 22 24 26 27 | mp3an2i | |
29 | 28 | ex | |
30 | 18 29 | dom2lem | |
31 | f1f1orn | |
|
32 | 30 31 | syl | |
33 | simprl | |
|
34 | f1ocnvfv | |
|
35 | 32 33 34 | syl2anc | |
36 | 16 35 | mpd | |
37 | 3 36 | eqtrid | |
38 | 37 | eleq1d | |
39 | 37 | oveq2d | |
40 | 39 | f1oeq3d | |
41 | 38 40 | anbi12d | |
42 | 6 41 | mpbird | |
43 | 5 42 | rexlimddv | |