Metamath Proof Explorer


Theorem infxpenc2lem1

Description: Lemma for infxpenc2 . (Contributed by Mario Carneiro, 30-May-2015)

Ref Expression
Hypotheses infxpenc2.1 φAOn
infxpenc2.2 φbAωbwOn1𝑜nb:b1-1 ontoω𝑜w
infxpenc2.3 W=xOn1𝑜ω𝑜x-1rannb
Assertion infxpenc2lem1 φbAωbWOn1𝑜nb:b1-1 ontoω𝑜W

Proof

Step Hyp Ref Expression
1 infxpenc2.1 φAOn
2 infxpenc2.2 φbAωbwOn1𝑜nb:b1-1 ontoω𝑜w
3 infxpenc2.3 W=xOn1𝑜ω𝑜x-1rannb
4 2 r19.21bi φbAωbwOn1𝑜nb:b1-1 ontoω𝑜w
5 4 impr φbAωbwOn1𝑜nb:b1-1 ontoω𝑜w
6 simpr φbAωbwOn1𝑜nb:b1-1 ontoω𝑜wwOn1𝑜nb:b1-1 ontoω𝑜w
7 oveq2 x=wω𝑜x=ω𝑜w
8 eqid xOn1𝑜ω𝑜x=xOn1𝑜ω𝑜x
9 ovex ω𝑜wV
10 7 8 9 fvmpt wOn1𝑜xOn1𝑜ω𝑜xw=ω𝑜w
11 10 ad2antrl φbAωbwOn1𝑜nb:b1-1 ontoω𝑜wxOn1𝑜ω𝑜xw=ω𝑜w
12 f1ofo nb:b1-1 ontoω𝑜wnb:bontoω𝑜w
13 12 ad2antll φbAωbwOn1𝑜nb:b1-1 ontoω𝑜wnb:bontoω𝑜w
14 forn nb:bontoω𝑜wrannb=ω𝑜w
15 13 14 syl φbAωbwOn1𝑜nb:b1-1 ontoω𝑜wrannb=ω𝑜w
16 11 15 eqtr4d φbAωbwOn1𝑜nb:b1-1 ontoω𝑜wxOn1𝑜ω𝑜xw=rannb
17 ovex ω𝑜xV
18 17 2a1i φbAωbwOn1𝑜nb:b1-1 ontoω𝑜wxOn1𝑜ω𝑜xV
19 omelon ωOn
20 1onn 1𝑜ω
21 ondif2 ωOn2𝑜ωOn1𝑜ω
22 19 20 21 mpbir2an ωOn2𝑜
23 eldifi xOn1𝑜xOn
24 23 ad2antrl φbAωbwOn1𝑜nb:b1-1 ontoω𝑜wxOn1𝑜yOn1𝑜xOn
25 eldifi yOn1𝑜yOn
26 25 ad2antll φbAωbwOn1𝑜nb:b1-1 ontoω𝑜wxOn1𝑜yOn1𝑜yOn
27 oecan ωOn2𝑜xOnyOnω𝑜x=ω𝑜yx=y
28 22 24 26 27 mp3an2i φbAωbwOn1𝑜nb:b1-1 ontoω𝑜wxOn1𝑜yOn1𝑜ω𝑜x=ω𝑜yx=y
29 28 ex φbAωbwOn1𝑜nb:b1-1 ontoω𝑜wxOn1𝑜yOn1𝑜ω𝑜x=ω𝑜yx=y
30 18 29 dom2lem φbAωbwOn1𝑜nb:b1-1 ontoω𝑜wxOn1𝑜ω𝑜x:On1𝑜1-1V
31 f1f1orn xOn1𝑜ω𝑜x:On1𝑜1-1VxOn1𝑜ω𝑜x:On1𝑜1-1 ontoranxOn1𝑜ω𝑜x
32 30 31 syl φbAωbwOn1𝑜nb:b1-1 ontoω𝑜wxOn1𝑜ω𝑜x:On1𝑜1-1 ontoranxOn1𝑜ω𝑜x
33 simprl φbAωbwOn1𝑜nb:b1-1 ontoω𝑜wwOn1𝑜
34 f1ocnvfv xOn1𝑜ω𝑜x:On1𝑜1-1 ontoranxOn1𝑜ω𝑜xwOn1𝑜xOn1𝑜ω𝑜xw=rannbxOn1𝑜ω𝑜x-1rannb=w
35 32 33 34 syl2anc φbAωbwOn1𝑜nb:b1-1 ontoω𝑜wxOn1𝑜ω𝑜xw=rannbxOn1𝑜ω𝑜x-1rannb=w
36 16 35 mpd φbAωbwOn1𝑜nb:b1-1 ontoω𝑜wxOn1𝑜ω𝑜x-1rannb=w
37 3 36 eqtrid φbAωbwOn1𝑜nb:b1-1 ontoω𝑜wW=w
38 37 eleq1d φbAωbwOn1𝑜nb:b1-1 ontoω𝑜wWOn1𝑜wOn1𝑜
39 37 oveq2d φbAωbwOn1𝑜nb:b1-1 ontoω𝑜wω𝑜W=ω𝑜w
40 39 f1oeq3d φbAωbwOn1𝑜nb:b1-1 ontoω𝑜wnb:b1-1 ontoω𝑜Wnb:b1-1 ontoω𝑜w
41 38 40 anbi12d φbAωbwOn1𝑜nb:b1-1 ontoω𝑜wWOn1𝑜nb:b1-1 ontoω𝑜WwOn1𝑜nb:b1-1 ontoω𝑜w
42 6 41 mpbird φbAωbwOn1𝑜nb:b1-1 ontoω𝑜wWOn1𝑜nb:b1-1 ontoω𝑜W
43 5 42 rexlimddv φbAωbWOn1𝑜nb:b1-1 ontoω𝑜W