| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
|
| 2 |
|
simplr |
|
| 3 |
|
simpr |
|
| 4 |
1 2 3
|
0funcg |
|
| 5 |
|
opex |
|
| 6 |
|
sneq |
|
| 7 |
6
|
eqeq2d |
|
| 8 |
5 7
|
spcev |
|
| 9 |
4 8
|
syl |
|
| 10 |
|
eusn |
|
| 11 |
9 10
|
sylibr |
|
| 12 |
11
|
ralrimiva |
|
| 13 |
|
0cat |
|
| 14 |
|
oveq2 |
|
| 15 |
14
|
eleq2d |
|
| 16 |
15
|
eubidv |
|
| 17 |
16
|
rspcv |
|
| 18 |
13 17
|
ax-mp |
|
| 19 |
|
euex |
|
| 20 |
|
funcrcl |
|
| 21 |
20
|
simpld |
|
| 22 |
21
|
elexd |
|
| 23 |
|
eqid |
|
| 24 |
|
base0 |
|
| 25 |
|
eqidd |
|
| 26 |
|
id |
|
| 27 |
23 24 25 26
|
func0g2 |
|
| 28 |
27
|
eqcomd |
|
| 29 |
22 28
|
jca |
|
| 30 |
29
|
exlimiv |
|
| 31 |
18 19 30
|
3syl |
|
| 32 |
12 31
|
impbii |
|