Metamath Proof Explorer


Theorem initc

Description: Sets with empty base are the only initial objects in the category of small categories. Example 7.2(3) of Adamek p. 101. (Contributed by Zhi Wang, 15-Nov-2025)

Ref Expression
Assertion initc C V = Base C d Cat ∃! f f C Func d

Proof

Step Hyp Ref Expression
1 simpll C V = Base C d Cat C V
2 simplr C V = Base C d Cat = Base C
3 simpr C V = Base C d Cat d Cat
4 1 2 3 0funcg C V = Base C d Cat C Func d =
5 opex V
6 sneq f = f =
7 6 eqeq2d f = C Func d = f C Func d =
8 5 7 spcev C Func d = f C Func d = f
9 4 8 syl C V = Base C d Cat f C Func d = f
10 eusn ∃! f f C Func d f C Func d = f
11 9 10 sylibr C V = Base C d Cat ∃! f f C Func d
12 11 ralrimiva C V = Base C d Cat ∃! f f C Func d
13 0cat Cat
14 oveq2 d = C Func d = C Func
15 14 eleq2d d = f C Func d f C Func
16 15 eubidv d = ∃! f f C Func d ∃! f f C Func
17 16 rspcv Cat d Cat ∃! f f C Func d ∃! f f C Func
18 13 17 ax-mp d Cat ∃! f f C Func d ∃! f f C Func
19 euex ∃! f f C Func f f C Func
20 funcrcl f C Func C Cat Cat
21 20 simpld f C Func C Cat
22 21 elexd f C Func C V
23 eqid Base C = Base C
24 base0 = Base
25 eqidd f C Func =
26 id f C Func f C Func
27 23 24 25 26 func0g2 f C Func Base C =
28 27 eqcomd f C Func = Base C
29 22 28 jca f C Func C V = Base C
30 29 exlimiv f f C Func C V = Base C
31 18 19 30 3syl d Cat ∃! f f C Func d C V = Base C
32 12 31 impbii C V = Base C d Cat ∃! f f C Func d