Metamath Proof Explorer


Theorem invss

Description: The inverse relation is a relation between morphisms F : X --> Y and their inverses G : Y --> X . (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses invfval.b B=BaseC
invfval.n N=InvC
invfval.c φCCat
invfval.x φXB
invfval.y φYB
invss.h H=HomC
Assertion invss φXNYXHY×YHX

Proof

Step Hyp Ref Expression
1 invfval.b B=BaseC
2 invfval.n N=InvC
3 invfval.c φCCat
4 invfval.x φXB
5 invfval.y φYB
6 invss.h H=HomC
7 eqid SectC=SectC
8 1 2 3 4 5 7 invfval φXNY=XSectCYYSectCX-1
9 inss1 XSectCYYSectCX-1XSectCY
10 8 9 eqsstrdi φXNYXSectCY
11 eqid compC=compC
12 eqid IdC=IdC
13 1 6 11 12 7 3 4 5 sectss φXSectCYXHY×YHX
14 10 13 sstrd φXNYXHY×YHX