Description: The function F is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by AV, 13-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ioorf.1 | |
|
Assertion | ioorinv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioorf.1 | |
|
2 | ioof | |
|
3 | ffn | |
|
4 | ovelrn | |
|
5 | 2 3 4 | mp2b | |
6 | 1 | ioorinv2 | |
7 | 6 | fveq2d | |
8 | df-ov | |
|
9 | 7 8 | eqtr4di | |
10 | df-ne | |
|
11 | neeq1 | |
|
12 | 10 11 | bitr3id | |
13 | 2fveq3 | |
|
14 | id | |
|
15 | 13 14 | eqeq12d | |
16 | 12 15 | imbi12d | |
17 | 9 16 | mpbiri | |
18 | 17 | a1i | |
19 | 18 | rexlimivv | |
20 | 5 19 | sylbi | |
21 | ioorebas | |
|
22 | 1 | ioorval | |
23 | 21 22 | ax-mp | |
24 | iooid | |
|
25 | 24 | iftruei | |
26 | 23 25 | eqtri | |
27 | 26 | fveq2i | |
28 | df-ov | |
|
29 | 27 28 | eqtr4i | |
30 | 24 | eqeq2i | |
31 | 30 | biimpri | |
32 | 31 | fveq2d | |
33 | 32 | fveq2d | |
34 | 29 33 31 | 3eqtr4a | |
35 | 20 34 | pm2.61d2 | |