Metamath Proof Explorer


Theorem ioorinv

Description: The function F is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by AV, 13-Sep-2020)

Ref Expression
Hypothesis ioorf.1 F=xran.ifx=00supx*<supx*<
Assertion ioorinv Aran..FA=A

Proof

Step Hyp Ref Expression
1 ioorf.1 F=xran.ifx=00supx*<supx*<
2 ioof .:*×*𝒫
3 ffn .:*×*𝒫.Fn*×*
4 ovelrn .Fn*×*Aran.a*b*A=ab
5 2 3 4 mp2b Aran.a*b*A=ab
6 1 ioorinv2 abFab=ab
7 6 fveq2d ab.Fab=.ab
8 df-ov ab=.ab
9 7 8 eqtr4di ab.Fab=ab
10 df-ne A¬A=
11 neeq1 A=abAab
12 10 11 bitr3id A=ab¬A=ab
13 2fveq3 A=ab.FA=.Fab
14 id A=abA=ab
15 13 14 eqeq12d A=ab.FA=A.Fab=ab
16 12 15 imbi12d A=ab¬A=.FA=Aab.Fab=ab
17 9 16 mpbiri A=ab¬A=.FA=A
18 17 a1i a*b*A=ab¬A=.FA=A
19 18 rexlimivv a*b*A=ab¬A=.FA=A
20 5 19 sylbi Aran.¬A=.FA=A
21 ioorebas 00ran.
22 1 ioorval 00ran.F00=if00=00sup00*<sup00*<
23 21 22 ax-mp F00=if00=00sup00*<sup00*<
24 iooid 00=
25 24 iftruei if00=00sup00*<sup00*<=00
26 23 25 eqtri F00=00
27 26 fveq2i .F00=.00
28 df-ov 00=.00
29 27 28 eqtr4i .F00=00
30 24 eqeq2i A=00A=
31 30 biimpri A=A=00
32 31 fveq2d A=FA=F00
33 32 fveq2d A=.FA=.F00
34 29 33 31 3eqtr4a A=.FA=A
35 20 34 pm2.61d2 Aran..FA=A