Metamath Proof Explorer


Theorem iotaexOLD

Description: Obsolete version of iotaex as of 23-Dec-2024. (Contributed by Andrew Salmon, 11-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion iotaexOLD ιx|φV

Proof

Step Hyp Ref Expression
1 iotaval xφx=zιx|φ=z
2 1 eqcomd xφx=zz=ιx|φ
3 2 eximi zxφx=zzz=ιx|φ
4 eu6 ∃!xφzxφx=z
5 isset ιx|φVzz=ιx|φ
6 3 4 5 3imtr4i ∃!xφιx|φV
7 iotanul ¬∃!xφιx|φ=
8 0ex V
9 7 8 eqeltrdi ¬∃!xφιx|φV
10 6 9 pm2.61i ιx|φV