Metamath Proof Explorer


Theorem ipval3

Description: Expansion of the inner product value ipval . (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses dipfval.1 X=BaseSetU
dipfval.2 G=+vU
dipfval.4 S=𝑠OLDU
dipfval.6 N=normCVU
dipfval.7 P=𝑖OLDU
ipval3.3 M=-vU
Assertion ipval3 UNrmCVecAXBXAPB=NAGB2-NAMB2+iNAGiSB2NAMiSB24

Proof

Step Hyp Ref Expression
1 dipfval.1 X=BaseSetU
2 dipfval.2 G=+vU
3 dipfval.4 S=𝑠OLDU
4 dipfval.6 N=normCVU
5 dipfval.7 P=𝑖OLDU
6 ipval3.3 M=-vU
7 1 2 3 4 5 ipval2 UNrmCVecAXBXAPB=NAGB2-NAG-1SB2+iNAGiSB2NAGiSB24
8 1 2 3 6 nvmval UNrmCVecAXBXAMB=AG-1SB
9 8 fveq2d UNrmCVecAXBXNAMB=NAG-1SB
10 9 oveq1d UNrmCVecAXBXNAMB2=NAG-1SB2
11 10 oveq2d UNrmCVecAXBXNAGB2NAMB2=NAGB2NAG-1SB2
12 ax-icn i
13 1 3 nvscl UNrmCVeciBXiSBX
14 12 13 mp3an2 UNrmCVecBXiSBX
15 14 3adant2 UNrmCVecAXBXiSBX
16 1 2 3 6 nvmval UNrmCVecAXiSBXAMiSB=AG-1SiSB
17 15 16 syld3an3 UNrmCVecAXBXAMiSB=AG-1SiSB
18 neg1cn 1
19 1 3 nvsass UNrmCVec1iBX-1iSB=-1SiSB
20 18 19 mp3anr1 UNrmCVeciBX-1iSB=-1SiSB
21 12 20 mpanr1 UNrmCVecBX-1iSB=-1SiSB
22 12 mulm1i -1i=i
23 22 oveq1i -1iSB=iSB
24 21 23 eqtr3di UNrmCVecBX-1SiSB=iSB
25 24 3adant2 UNrmCVecAXBX-1SiSB=iSB
26 25 oveq2d UNrmCVecAXBXAG-1SiSB=AGiSB
27 17 26 eqtrd UNrmCVecAXBXAMiSB=AGiSB
28 27 fveq2d UNrmCVecAXBXNAMiSB=NAGiSB
29 28 oveq1d UNrmCVecAXBXNAMiSB2=NAGiSB2
30 29 oveq2d UNrmCVecAXBXNAGiSB2NAMiSB2=NAGiSB2NAGiSB2
31 30 oveq2d UNrmCVecAXBXiNAGiSB2NAMiSB2=iNAGiSB2NAGiSB2
32 11 31 oveq12d UNrmCVecAXBXNAGB2-NAMB2+iNAGiSB2NAMiSB2=NAGB2-NAG-1SB2+iNAGiSB2NAGiSB2
33 32 oveq1d UNrmCVecAXBXNAGB2-NAMB2+iNAGiSB2NAMiSB24=NAGB2-NAG-1SB2+iNAGiSB2NAGiSB24
34 7 33 eqtr4d UNrmCVecAXBXAPB=NAGB2-NAMB2+iNAGiSB2NAMiSB24