Metamath Proof Explorer


Theorem isacs

Description: A set is an algebraic closure system iff it is specified by some function of the finite subsets, such that a set is closed iff it does not expand under the operation. (Contributed by Stefan O'Rear, 2-Apr-2015)

Ref Expression
Assertion isacs C ACS X C Moore X f f : 𝒫 X 𝒫 X s 𝒫 X s C f 𝒫 s Fin s

Proof

Step Hyp Ref Expression
1 elfvex C ACS X X V
2 elfvex C Moore X X V
3 2 adantr C Moore X f f : 𝒫 X 𝒫 X s 𝒫 X s C f 𝒫 s Fin s X V
4 fveq2 x = X Moore x = Moore X
5 pweq x = X 𝒫 x = 𝒫 X
6 5 5 feq23d x = X f : 𝒫 x 𝒫 x f : 𝒫 X 𝒫 X
7 5 raleqdv x = X s 𝒫 x s c f 𝒫 s Fin s s 𝒫 X s c f 𝒫 s Fin s
8 6 7 anbi12d x = X f : 𝒫 x 𝒫 x s 𝒫 x s c f 𝒫 s Fin s f : 𝒫 X 𝒫 X s 𝒫 X s c f 𝒫 s Fin s
9 8 exbidv x = X f f : 𝒫 x 𝒫 x s 𝒫 x s c f 𝒫 s Fin s f f : 𝒫 X 𝒫 X s 𝒫 X s c f 𝒫 s Fin s
10 4 9 rabeqbidv x = X c Moore x | f f : 𝒫 x 𝒫 x s 𝒫 x s c f 𝒫 s Fin s = c Moore X | f f : 𝒫 X 𝒫 X s 𝒫 X s c f 𝒫 s Fin s
11 df-acs ACS = x V c Moore x | f f : 𝒫 x 𝒫 x s 𝒫 x s c f 𝒫 s Fin s
12 fvex Moore X V
13 12 rabex c Moore X | f f : 𝒫 X 𝒫 X s 𝒫 X s c f 𝒫 s Fin s V
14 10 11 13 fvmpt X V ACS X = c Moore X | f f : 𝒫 X 𝒫 X s 𝒫 X s c f 𝒫 s Fin s
15 14 eleq2d X V C ACS X C c Moore X | f f : 𝒫 X 𝒫 X s 𝒫 X s c f 𝒫 s Fin s
16 eleq2 c = C s c s C
17 16 bibi1d c = C s c f 𝒫 s Fin s s C f 𝒫 s Fin s
18 17 ralbidv c = C s 𝒫 X s c f 𝒫 s Fin s s 𝒫 X s C f 𝒫 s Fin s
19 18 anbi2d c = C f : 𝒫 X 𝒫 X s 𝒫 X s c f 𝒫 s Fin s f : 𝒫 X 𝒫 X s 𝒫 X s C f 𝒫 s Fin s
20 19 exbidv c = C f f : 𝒫 X 𝒫 X s 𝒫 X s c f 𝒫 s Fin s f f : 𝒫 X 𝒫 X s 𝒫 X s C f 𝒫 s Fin s
21 20 elrab C c Moore X | f f : 𝒫 X 𝒫 X s 𝒫 X s c f 𝒫 s Fin s C Moore X f f : 𝒫 X 𝒫 X s 𝒫 X s C f 𝒫 s Fin s
22 15 21 bitrdi X V C ACS X C Moore X f f : 𝒫 X 𝒫 X s 𝒫 X s C f 𝒫 s Fin s
23 1 3 22 pm5.21nii C ACS X C Moore X f f : 𝒫 X 𝒫 X s 𝒫 X s C f 𝒫 s Fin s