Metamath Proof Explorer


Theorem isacs

Description: A set is an algebraic closure system iff it is specified by some function of the finite subsets, such that a set is closed iff it does not expand under the operation. (Contributed by Stefan O'Rear, 2-Apr-2015)

Ref Expression
Assertion isacs CACSXCMooreXff:𝒫X𝒫Xs𝒫XsCf𝒫sFins

Proof

Step Hyp Ref Expression
1 elfvex CACSXXV
2 elfvex CMooreXXV
3 2 adantr CMooreXff:𝒫X𝒫Xs𝒫XsCf𝒫sFinsXV
4 fveq2 x=XMoorex=MooreX
5 pweq x=X𝒫x=𝒫X
6 5 5 feq23d x=Xf:𝒫x𝒫xf:𝒫X𝒫X
7 5 raleqdv x=Xs𝒫xscf𝒫sFinss𝒫Xscf𝒫sFins
8 6 7 anbi12d x=Xf:𝒫x𝒫xs𝒫xscf𝒫sFinsf:𝒫X𝒫Xs𝒫Xscf𝒫sFins
9 8 exbidv x=Xff:𝒫x𝒫xs𝒫xscf𝒫sFinsff:𝒫X𝒫Xs𝒫Xscf𝒫sFins
10 4 9 rabeqbidv x=XcMoorex|ff:𝒫x𝒫xs𝒫xscf𝒫sFins=cMooreX|ff:𝒫X𝒫Xs𝒫Xscf𝒫sFins
11 df-acs ACS=xVcMoorex|ff:𝒫x𝒫xs𝒫xscf𝒫sFins
12 fvex MooreXV
13 12 rabex cMooreX|ff:𝒫X𝒫Xs𝒫Xscf𝒫sFinsV
14 10 11 13 fvmpt XVACSX=cMooreX|ff:𝒫X𝒫Xs𝒫Xscf𝒫sFins
15 14 eleq2d XVCACSXCcMooreX|ff:𝒫X𝒫Xs𝒫Xscf𝒫sFins
16 eleq2 c=CscsC
17 16 bibi1d c=Cscf𝒫sFinssCf𝒫sFins
18 17 ralbidv c=Cs𝒫Xscf𝒫sFinss𝒫XsCf𝒫sFins
19 18 anbi2d c=Cf:𝒫X𝒫Xs𝒫Xscf𝒫sFinsf:𝒫X𝒫Xs𝒫XsCf𝒫sFins
20 19 exbidv c=Cff:𝒫X𝒫Xs𝒫Xscf𝒫sFinsff:𝒫X𝒫Xs𝒫XsCf𝒫sFins
21 20 elrab CcMooreX|ff:𝒫X𝒫Xs𝒫Xscf𝒫sFinsCMooreXff:𝒫X𝒫Xs𝒫XsCf𝒫sFins
22 15 21 bitrdi XVCACSXCMooreXff:𝒫X𝒫Xs𝒫XsCf𝒫sFins
23 1 3 22 pm5.21nii CACSXCMooreXff:𝒫X𝒫Xs𝒫XsCf𝒫sFins