Metamath Proof Explorer


Theorem isacs4

Description: A closure system is algebraic iff closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015)

Ref Expression
Hypothesis acsdrscl.f F=mrClsC
Assertion isacs4 CACSXCMooreXs𝒫𝒫XtoIncsDirsetFs=Fs

Proof

Step Hyp Ref Expression
1 acsdrscl.f F=mrClsC
2 isacs3lem CACSXCMooreXt𝒫CtoInctDirsettC
3 1 isacs4lem CMooreXt𝒫CtoInctDirsettCCMooreXs𝒫𝒫XtoIncsDirsetFs=Fs
4 2 3 syl CACSXCMooreXs𝒫𝒫XtoIncsDirsetFs=Fs
5 1 isacs5lem CMooreXs𝒫𝒫XtoIncsDirsetFs=FsCMooreXt𝒫XFt=F𝒫tFin
6 1 isacs5 CACSXCMooreXt𝒫XFt=F𝒫tFin
7 5 6 sylibr CMooreXs𝒫𝒫XtoIncsDirsetFs=FsCACSX
8 4 7 impbii CACSXCMooreXs𝒫𝒫XtoIncsDirsetFs=Fs