Description: A closure system is algebraic iff the closure of a generating set is the union of the closures of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | acsdrscl.f | |
|
Assertion | isacs5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acsdrscl.f | |
|
2 | isacs3lem | |
|
3 | 1 | isacs4lem | |
4 | 1 | isacs5lem | |
5 | 2 3 4 | 3syl | |
6 | simpl | |
|
7 | elpwi | |
|
8 | 1 | mrcidb2 | |
9 | 7 8 | sylan2 | |
10 | 9 | adantr | |
11 | simpr | |
|
12 | 1 | mrcf | |
13 | ffun | |
|
14 | funiunfv | |
|
15 | 12 13 14 | 3syl | |
16 | 15 | ad2antrr | |
17 | 11 16 | eqtr4d | |
18 | 17 | sseq1d | |
19 | iunss | |
|
20 | 18 19 | bitrdi | |
21 | 10 20 | bitrd | |
22 | 21 | ex | |
23 | 22 | ralimdva | |
24 | 23 | imp | |
25 | 1 | isacs2 | |
26 | 6 24 25 | sylanbrc | |
27 | 5 26 | impbii | |