| Step |
Hyp |
Ref |
Expression |
| 1 |
|
acsdrscl.f |
|
| 2 |
|
unifpw |
|
| 3 |
2
|
fveq2i |
|
| 4 |
|
vex |
|
| 5 |
|
fpwipodrs |
|
| 6 |
4 5
|
mp1i |
|
| 7 |
|
fveq2 |
|
| 8 |
7
|
eleq1d |
|
| 9 |
|
unieq |
|
| 10 |
9
|
fveq2d |
|
| 11 |
|
imaeq2 |
|
| 12 |
11
|
unieqd |
|
| 13 |
10 12
|
eqeq12d |
|
| 14 |
8 13
|
imbi12d |
|
| 15 |
|
simplr |
|
| 16 |
|
inss1 |
|
| 17 |
|
elpwi |
|
| 18 |
17
|
sspwd |
|
| 19 |
18
|
adantl |
|
| 20 |
16 19
|
sstrid |
|
| 21 |
|
vpwex |
|
| 22 |
21
|
inex1 |
|
| 23 |
22
|
elpw |
|
| 24 |
20 23
|
sylibr |
|
| 25 |
24
|
adantlr |
|
| 26 |
14 15 25
|
rspcdva |
|
| 27 |
6 26
|
mpd |
|
| 28 |
3 27
|
eqtr3id |
|
| 29 |
28
|
ralrimiva |
|
| 30 |
29
|
ex |
|
| 31 |
30
|
imdistani |
|