Description: If closure commutes with directed unions, then the closure of a set is the closure of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | acsdrscl.f | |
|
Assertion | isacs5lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acsdrscl.f | |
|
2 | unifpw | |
|
3 | 2 | fveq2i | |
4 | vex | |
|
5 | fpwipodrs | |
|
6 | 4 5 | mp1i | |
7 | fveq2 | |
|
8 | 7 | eleq1d | |
9 | unieq | |
|
10 | 9 | fveq2d | |
11 | imaeq2 | |
|
12 | 11 | unieqd | |
13 | 10 12 | eqeq12d | |
14 | 8 13 | imbi12d | |
15 | simplr | |
|
16 | inss1 | |
|
17 | elpwi | |
|
18 | 17 | sspwd | |
19 | 18 | adantl | |
20 | 16 19 | sstrid | |
21 | vpwex | |
|
22 | 21 | inex1 | |
23 | 22 | elpw | |
24 | 20 23 | sylibr | |
25 | 24 | adantlr | |
26 | 14 15 25 | rspcdva | |
27 | 6 26 | mpd | |
28 | 3 27 | eqtr3id | |
29 | 28 | ralrimiva | |
30 | 29 | ex | |
31 | 30 | imdistani | |