Metamath Proof Explorer


Theorem iscld

Description: The predicate "the class S is a closed set". (Contributed by NM, 2-Oct-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis iscld.1 X=J
Assertion iscld JTopSClsdJSXXSJ

Proof

Step Hyp Ref Expression
1 iscld.1 X=J
2 1 cldval JTopClsdJ=x𝒫X|XxJ
3 2 eleq2d JTopSClsdJSx𝒫X|XxJ
4 difeq2 x=SXx=XS
5 4 eleq1d x=SXxJXSJ
6 5 elrab Sx𝒫X|XxJS𝒫XXSJ
7 3 6 bitrdi JTopSClsdJS𝒫XXSJ
8 1 topopn JTopXJ
9 elpw2g XJS𝒫XSX
10 8 9 syl JTopS𝒫XSX
11 10 anbi1d JTopS𝒫XXSJSXXSJ
12 7 11 bitrd JTopSClsdJSXXSJ