Metamath Proof Explorer


Theorem isclmi

Description: Reverse direction of isclm . (Contributed by Mario Carneiro, 30-Oct-2015)

Ref Expression
Hypothesis clm0.f F=ScalarW
Assertion isclmi WLModF=fld𝑠KKSubRingfldWCMod

Proof

Step Hyp Ref Expression
1 clm0.f F=ScalarW
2 simp1 WLModF=fld𝑠KKSubRingfldWLMod
3 simp2 WLModF=fld𝑠KKSubRingfldF=fld𝑠K
4 eqid fld𝑠K=fld𝑠K
5 4 subrgbas KSubRingfldK=Basefld𝑠K
6 5 3ad2ant3 WLModF=fld𝑠KKSubRingfldK=Basefld𝑠K
7 3 fveq2d WLModF=fld𝑠KKSubRingfldBaseF=Basefld𝑠K
8 6 7 eqtr4d WLModF=fld𝑠KKSubRingfldK=BaseF
9 8 oveq2d WLModF=fld𝑠KKSubRingfldfld𝑠K=fld𝑠BaseF
10 3 9 eqtrd WLModF=fld𝑠KKSubRingfldF=fld𝑠BaseF
11 simp3 WLModF=fld𝑠KKSubRingfldKSubRingfld
12 8 11 eqeltrrd WLModF=fld𝑠KKSubRingfldBaseFSubRingfld
13 eqid BaseF=BaseF
14 1 13 isclm WCModWLModF=fld𝑠BaseFBaseFSubRingfld
15 2 10 12 14 syl3anbrc WLModF=fld𝑠KKSubRingfldWCMod