Metamath Proof Explorer


Theorem isclwwlknx

Description: Characterization of a word representing a closed walk of a fixed length, definition of ClWWalks expanded. (Contributed by AV, 25-Apr-2021) (Proof shortened by AV, 22-Mar-2022)

Ref Expression
Hypotheses isclwwlknx.v V=VtxG
isclwwlknx.e E=EdgG
Assertion isclwwlknx NWNClWWalksNGWWordVi0..^W1WiWi+1ElastSWW0EW=N

Proof

Step Hyp Ref Expression
1 isclwwlknx.v V=VtxG
2 isclwwlknx.e E=EdgG
3 eleq1 W=NWN
4 len0nnbi WWordVWW
5 4 biimprcd WWWordVW
6 3 5 syl6bir W=NNWWordVW
7 6 impcom NW=NWWordVW
8 7 imp NW=NWWordVW
9 8 biantrurd NW=NWWordVi0..^W1WiWi+1ElastSWW0EWi0..^W1WiWi+1ElastSWW0E
10 9 bicomd NW=NWWordVWi0..^W1WiWi+1ElastSWW0Ei0..^W1WiWi+1ElastSWW0E
11 10 pm5.32da NW=NWWordVWi0..^W1WiWi+1ElastSWW0EWWordVi0..^W1WiWi+1ElastSWW0E
12 11 ex NW=NWWordVWi0..^W1WiWi+1ElastSWW0EWWordVi0..^W1WiWi+1ElastSWW0E
13 12 pm5.32rd NWWordVWi0..^W1WiWi+1ElastSWW0EW=NWWordVi0..^W1WiWi+1ElastSWW0EW=N
14 isclwwlkn WNClWWalksNGWClWWalksGW=N
15 1 2 isclwwlk WClWWalksGWWordVWi0..^W1WiWi+1ElastSWW0E
16 3anass WWordVWi0..^W1WiWi+1ElastSWW0EWWordVWi0..^W1WiWi+1ElastSWW0E
17 anass WWordVWi0..^W1WiWi+1ElastSWW0EWWordVWi0..^W1WiWi+1ElastSWW0E
18 16 17 bitri WWordVWi0..^W1WiWi+1ElastSWW0EWWordVWi0..^W1WiWi+1ElastSWW0E
19 15 18 bitri WClWWalksGWWordVWi0..^W1WiWi+1ElastSWW0E
20 19 anbi1i WClWWalksGW=NWWordVWi0..^W1WiWi+1ElastSWW0EW=N
21 14 20 bitri WNClWWalksNGWWordVWi0..^W1WiWi+1ElastSWW0EW=N
22 3anass WWordVi0..^W1WiWi+1ElastSWW0EWWordVi0..^W1WiWi+1ElastSWW0E
23 22 anbi1i WWordVi0..^W1WiWi+1ElastSWW0EW=NWWordVi0..^W1WiWi+1ElastSWW0EW=N
24 13 21 23 3bitr4g NWNClWWalksNGWWordVi0..^W1WiWi+1ElastSWW0EW=N