Metamath Proof Explorer


Theorem iscms

Description: A complete metric space is a metric space with a complete metric. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses iscms.1 X=BaseM
iscms.2 D=distMX×X
Assertion iscms MCMetSpMMetSpDCMetX

Proof

Step Hyp Ref Expression
1 iscms.1 X=BaseM
2 iscms.2 D=distMX×X
3 fvexd w=MBasewV
4 fveq2 w=Mdistw=distM
5 4 adantr w=Mb=Basewdistw=distM
6 id b=Basewb=Basew
7 fveq2 w=MBasew=BaseM
8 7 1 eqtr4di w=MBasew=X
9 6 8 sylan9eqr w=Mb=Basewb=X
10 9 sqxpeqd w=Mb=Basewb×b=X×X
11 5 10 reseq12d w=Mb=Basewdistwb×b=distMX×X
12 11 2 eqtr4di w=Mb=Basewdistwb×b=D
13 9 fveq2d w=Mb=BasewCMetb=CMetX
14 12 13 eleq12d w=Mb=Basewdistwb×bCMetbDCMetX
15 3 14 sbcied w=M[˙Basew/b]˙distwb×bCMetbDCMetX
16 df-cms CMetSp=wMetSp|[˙Basew/b]˙distwb×bCMetb
17 15 16 elrab2 MCMetSpMMetSpDCMetX