Metamath Proof Explorer


Theorem iscnrm3

Description: A completely normal topology is a topology in which two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024)

Ref Expression
Assertion iscnrm3 J CNrm J Top s 𝒫 J t 𝒫 J s cls J t = cls J s t = n J m J s n t m n m =

Proof

Step Hyp Ref Expression
1 eqid J = J
2 1 iscnrm J CNrm J Top z 𝒫 J J 𝑡 z Nrm
3 iscnrm3lem1 J Top z 𝒫 J c Clsd J 𝑡 z d Clsd J 𝑡 z c d = l J 𝑡 z k J 𝑡 z c l d k l k = z 𝒫 J J 𝑡 z Top c Clsd J 𝑡 z d Clsd J 𝑡 z c d = l J 𝑡 z k J 𝑡 z c l d k l k =
4 isnrm3 J 𝑡 z Nrm J 𝑡 z Top c Clsd J 𝑡 z d Clsd J 𝑡 z c d = l J 𝑡 z k J 𝑡 z c l d k l k =
5 4 ralbii z 𝒫 J J 𝑡 z Nrm z 𝒫 J J 𝑡 z Top c Clsd J 𝑡 z d Clsd J 𝑡 z c d = l J 𝑡 z k J 𝑡 z c l d k l k =
6 3 5 bitr4di J Top z 𝒫 J c Clsd J 𝑡 z d Clsd J 𝑡 z c d = l J 𝑡 z k J 𝑡 z c l d k l k = z 𝒫 J J 𝑡 z Nrm
7 iscnrm3r J Top z 𝒫 J c Clsd J 𝑡 z d Clsd J 𝑡 z c d = l J 𝑡 z k J 𝑡 z c l d k l k = s 𝒫 J t 𝒫 J s cls J t = cls J s t = n J m J s n t m n m =
8 iscnrm3l J Top s 𝒫 J t 𝒫 J s cls J t = cls J s t = n J m J s n t m n m = z 𝒫 J c Clsd J 𝑡 z d Clsd J 𝑡 z c d = l J 𝑡 z k J 𝑡 z c l d k l k =
9 7 8 iscnrm3lem2 J Top z 𝒫 J c Clsd J 𝑡 z d Clsd J 𝑡 z c d = l J 𝑡 z k J 𝑡 z c l d k l k = s 𝒫 J t 𝒫 J s cls J t = cls J s t = n J m J s n t m n m =
10 6 9 bitr3d J Top z 𝒫 J J 𝑡 z Nrm s 𝒫 J t 𝒫 J s cls J t = cls J s t = n J m J s n t m n m =
11 10 pm5.32i J Top z 𝒫 J J 𝑡 z Nrm J Top s 𝒫 J t 𝒫 J s cls J t = cls J s t = n J m J s n t m n m =
12 2 11 bitri J CNrm J Top s 𝒫 J t 𝒫 J s cls J t = cls J s t = n J m J s n t m n m =