Step |
Hyp |
Ref |
Expression |
1 |
|
sseq2 |
|
2 |
|
ineq1 |
|
3 |
2
|
eqeq1d |
|
4 |
1 3
|
3anbi13d |
|
5 |
|
sseq2 |
|
6 |
|
ineq2 |
|
7 |
6
|
eqeq1d |
|
8 |
5 7
|
3anbi23d |
|
9 |
|
simp11 |
|
10 |
|
simp121 |
|
11 |
|
simp2l |
|
12 |
|
elrestr |
|
13 |
9 10 11 12
|
syl3anc |
|
14 |
|
simp2r |
|
15 |
|
elrestr |
|
16 |
9 10 14 15
|
syl3anc |
|
17 |
|
simp31 |
|
18 |
|
eqidd |
|
19 |
10
|
elpwid |
|
20 |
|
eqidd |
|
21 |
|
simp122 |
|
22 |
9 18 19 20 21
|
restcls2lem |
|
23 |
17 22
|
ssind |
|
24 |
|
simp32 |
|
25 |
|
simp123 |
|
26 |
9 18 19 20 25
|
restcls2lem |
|
27 |
24 26
|
ssind |
|
28 |
|
inss1 |
|
29 |
|
inss1 |
|
30 |
|
ss2in |
|
31 |
28 29 30
|
mp2an |
|
32 |
|
simp33 |
|
33 |
31 32
|
sseqtrid |
|
34 |
|
ss0 |
|
35 |
33 34
|
syl |
|
36 |
23 27 35
|
3jca |
|
37 |
13 16 36
|
3jca |
|
38 |
4 8 37
|
iscnrm3lem7 |
|