| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sseq2 |
|
| 2 |
|
ineq1 |
|
| 3 |
2
|
eqeq1d |
|
| 4 |
1 3
|
3anbi13d |
|
| 5 |
|
sseq2 |
|
| 6 |
|
ineq2 |
|
| 7 |
6
|
eqeq1d |
|
| 8 |
5 7
|
3anbi23d |
|
| 9 |
|
simp11 |
|
| 10 |
|
simp121 |
|
| 11 |
|
simp2l |
|
| 12 |
|
elrestr |
|
| 13 |
9 10 11 12
|
syl3anc |
|
| 14 |
|
simp2r |
|
| 15 |
|
elrestr |
|
| 16 |
9 10 14 15
|
syl3anc |
|
| 17 |
|
simp31 |
|
| 18 |
|
eqidd |
|
| 19 |
10
|
elpwid |
|
| 20 |
|
eqidd |
|
| 21 |
|
simp122 |
|
| 22 |
9 18 19 20 21
|
restcls2lem |
|
| 23 |
17 22
|
ssind |
|
| 24 |
|
simp32 |
|
| 25 |
|
simp123 |
|
| 26 |
9 18 19 20 25
|
restcls2lem |
|
| 27 |
24 26
|
ssind |
|
| 28 |
|
inss1 |
|
| 29 |
|
inss1 |
|
| 30 |
|
ss2in |
|
| 31 |
28 29 30
|
mp2an |
|
| 32 |
|
simp33 |
|
| 33 |
31 32
|
sseqtrid |
|
| 34 |
|
ss0 |
|
| 35 |
33 34
|
syl |
|
| 36 |
23 27 35
|
3jca |
|
| 37 |
13 16 36
|
3jca |
|
| 38 |
4 8 37
|
iscnrm3lem7 |
|