| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sseq2 |  | 
						
							| 2 |  | ineq1 |  | 
						
							| 3 | 2 | eqeq1d |  | 
						
							| 4 | 1 3 | 3anbi13d |  | 
						
							| 5 |  | sseq2 |  | 
						
							| 6 |  | ineq2 |  | 
						
							| 7 | 6 | eqeq1d |  | 
						
							| 8 | 5 7 | 3anbi23d |  | 
						
							| 9 |  | simp11 |  | 
						
							| 10 |  | simp121 |  | 
						
							| 11 |  | simp2l |  | 
						
							| 12 |  | elrestr |  | 
						
							| 13 | 9 10 11 12 | syl3anc |  | 
						
							| 14 |  | simp2r |  | 
						
							| 15 |  | elrestr |  | 
						
							| 16 | 9 10 14 15 | syl3anc |  | 
						
							| 17 |  | simp31 |  | 
						
							| 18 |  | eqidd |  | 
						
							| 19 | 10 | elpwid |  | 
						
							| 20 |  | eqidd |  | 
						
							| 21 |  | simp122 |  | 
						
							| 22 | 9 18 19 20 21 | restcls2lem |  | 
						
							| 23 | 17 22 | ssind |  | 
						
							| 24 |  | simp32 |  | 
						
							| 25 |  | simp123 |  | 
						
							| 26 | 9 18 19 20 25 | restcls2lem |  | 
						
							| 27 | 24 26 | ssind |  | 
						
							| 28 |  | inss1 |  | 
						
							| 29 |  | inss1 |  | 
						
							| 30 |  | ss2in |  | 
						
							| 31 | 28 29 30 | mp2an |  | 
						
							| 32 |  | simp33 |  | 
						
							| 33 | 31 32 | sseqtrid |  | 
						
							| 34 |  | ss0 |  | 
						
							| 35 | 33 34 | syl |  | 
						
							| 36 | 23 27 35 | 3jca |  | 
						
							| 37 | 13 16 36 | 3jca |  | 
						
							| 38 | 4 8 37 | iscnrm3lem7 |  |