Metamath Proof Explorer


Theorem isconn

Description: The predicate J is a connected topology . (Contributed by FL, 17-Nov-2008)

Ref Expression
Hypothesis isconn.1 X=J
Assertion isconn JConnJTopJClsdJ=X

Proof

Step Hyp Ref Expression
1 isconn.1 X=J
2 id j=Jj=J
3 fveq2 j=JClsdj=ClsdJ
4 2 3 ineq12d j=JjClsdj=JClsdJ
5 unieq j=Jj=J
6 5 1 eqtr4di j=Jj=X
7 6 preq2d j=Jj=X
8 4 7 eqeq12d j=JjClsdj=jJClsdJ=X
9 df-conn Conn=jTop|jClsdj=j
10 8 9 elrab2 JConnJTopJClsdJ=X