Description: The property of being a connected graph. (Contributed by Alexander van der Vekens, 2-Dec-2017) (Revised by AV, 15-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | isconngr.v | |
|
Assertion | isconngr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isconngr.v | |
|
2 | df-conngr | |
|
3 | 2 | eleq2i | |
4 | fvex | |
|
5 | raleq | |
|
6 | 5 | raleqbi1dv | |
7 | 4 6 | sbcie | |
8 | 7 | abbii | |
9 | 8 | eleq2i | |
10 | fveq2 | |
|
11 | 10 1 | eqtr4di | |
12 | fveq2 | |
|
13 | 12 | oveqd | |
14 | 13 | breqd | |
15 | 14 | 2exbidv | |
16 | 11 15 | raleqbidv | |
17 | 11 16 | raleqbidv | |
18 | fveq2 | |
|
19 | fveq2 | |
|
20 | 19 | oveqd | |
21 | 20 | breqd | |
22 | 21 | 2exbidv | |
23 | 18 22 | raleqbidv | |
24 | 18 23 | raleqbidv | |
25 | 24 | cbvabv | |
26 | 17 25 | elab2g | |
27 | 9 26 | bitrid | |
28 | 3 27 | bitrid | |