Metamath Proof Explorer


Theorem isconngr

Description: The property of being a connected graph. (Contributed by Alexander van der Vekens, 2-Dec-2017) (Revised by AV, 15-Feb-2021)

Ref Expression
Hypothesis isconngr.v V=VtxG
Assertion isconngr GWGConnGraphkVnVfpfkPathsOnGnp

Proof

Step Hyp Ref Expression
1 isconngr.v V=VtxG
2 df-conngr ConnGraph=g|[˙Vtxg/v]˙kvnvfpfkPathsOngnp
3 2 eleq2i GConnGraphGg|[˙Vtxg/v]˙kvnvfpfkPathsOngnp
4 fvex VtxgV
5 raleq v=VtxgnvfpfkPathsOngnpnVtxgfpfkPathsOngnp
6 5 raleqbi1dv v=VtxgkvnvfpfkPathsOngnpkVtxgnVtxgfpfkPathsOngnp
7 4 6 sbcie [˙Vtxg/v]˙kvnvfpfkPathsOngnpkVtxgnVtxgfpfkPathsOngnp
8 7 abbii g|[˙Vtxg/v]˙kvnvfpfkPathsOngnp=g|kVtxgnVtxgfpfkPathsOngnp
9 8 eleq2i Gg|[˙Vtxg/v]˙kvnvfpfkPathsOngnpGg|kVtxgnVtxgfpfkPathsOngnp
10 fveq2 h=GVtxh=VtxG
11 10 1 eqtr4di h=GVtxh=V
12 fveq2 h=GPathsOnh=PathsOnG
13 12 oveqd h=GkPathsOnhn=kPathsOnGn
14 13 breqd h=GfkPathsOnhnpfkPathsOnGnp
15 14 2exbidv h=GfpfkPathsOnhnpfpfkPathsOnGnp
16 11 15 raleqbidv h=GnVtxhfpfkPathsOnhnpnVfpfkPathsOnGnp
17 11 16 raleqbidv h=GkVtxhnVtxhfpfkPathsOnhnpkVnVfpfkPathsOnGnp
18 fveq2 g=hVtxg=Vtxh
19 fveq2 g=hPathsOng=PathsOnh
20 19 oveqd g=hkPathsOngn=kPathsOnhn
21 20 breqd g=hfkPathsOngnpfkPathsOnhnp
22 21 2exbidv g=hfpfkPathsOngnpfpfkPathsOnhnp
23 18 22 raleqbidv g=hnVtxgfpfkPathsOngnpnVtxhfpfkPathsOnhnp
24 18 23 raleqbidv g=hkVtxgnVtxgfpfkPathsOngnpkVtxhnVtxhfpfkPathsOnhnp
25 24 cbvabv g|kVtxgnVtxgfpfkPathsOngnp=h|kVtxhnVtxhfpfkPathsOnhnp
26 17 25 elab2g GWGg|kVtxgnVtxgfpfkPathsOngnpkVnVfpfkPathsOnGnp
27 9 26 bitrid GWGg|[˙Vtxg/v]˙kvnvfpfkPathsOngnpkVnVfpfkPathsOnGnp
28 3 27 bitrid GWGConnGraphkVnVfpfkPathsOnGnp