Metamath Proof Explorer


Theorem iserabs

Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses iserabs.1 Z=M
iserabs.2 φseqM+FA
iserabs.3 φseqM+GB
iserabs.5 φM
iserabs.6 φkZFk
iserabs.7 φkZGk=Fk
Assertion iserabs φAB

Proof

Step Hyp Ref Expression
1 iserabs.1 Z=M
2 iserabs.2 φseqM+FA
3 iserabs.3 φseqM+GB
4 iserabs.5 φM
5 iserabs.6 φkZFk
6 iserabs.7 φkZGk=Fk
7 1 fvexi ZV
8 7 mptex mZseqM+FmV
9 8 a1i φmZseqM+FmV
10 1 4 5 serf φseqM+F:Z
11 10 ffvelcdmda φnZseqM+Fn
12 2fveq3 m=nseqM+Fm=seqM+Fn
13 eqid mZseqM+Fm=mZseqM+Fm
14 fvex seqM+FnV
15 12 13 14 fvmpt nZmZseqM+Fmn=seqM+Fn
16 15 adantl φnZmZseqM+Fmn=seqM+Fn
17 1 2 9 4 11 16 climabs φmZseqM+FmA
18 11 abscld φnZseqM+Fn
19 16 18 eqeltrd φnZmZseqM+Fmn
20 5 abscld φkZFk
21 6 20 eqeltrd φkZGk
22 1 4 21 serfre φseqM+G:Z
23 22 ffvelcdmda φnZseqM+Gn
24 simpr φnZnZ
25 24 1 eleqtrdi φnZnM
26 elfzuz kMnkM
27 26 1 eleqtrrdi kMnkZ
28 27 5 sylan2 φkMnFk
29 28 adantlr φnZkMnFk
30 27 6 sylan2 φkMnGk=Fk
31 30 adantlr φnZkMnGk=Fk
32 25 29 31 seqabs φnZseqM+FnseqM+Gn
33 16 32 eqbrtrd φnZmZseqM+FmnseqM+Gn
34 1 4 17 3 19 23 33 climle φAB