Description: A set is VII-finite iff it is non-well-orderable or finite. (Contributed by Mario Carneiro, 17-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | isfin7-2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfin7 | |
|
2 | 1 | ibi | |
3 | isnum2 | |
|
4 | ensym | |
|
5 | simprl | |
|
6 | enfi | |
|
7 | onfin | |
|
8 | 6 7 | sylan9bbr | |
9 | 8 | biimprd | |
10 | 9 | con3d | |
11 | 10 | impcom | |
12 | 5 11 | eldifd | |
13 | simprr | |
|
14 | 12 13 | jca | |
15 | 4 14 | sylanr2 | |
16 | 15 | ex | |
17 | 16 | reximdv2 | |
18 | 17 | com12 | |
19 | 3 18 | sylbi | |
20 | 19 | con1d | |
21 | 2 20 | syl5com | |
22 | eldifi | |
|
23 | ensym | |
|
24 | isnumi | |
|
25 | 22 23 24 | syl2an | |
26 | 25 | rexlimiva | |
27 | 26 | con3i | |
28 | isfin7 | |
|
29 | 27 28 | imbitrrid | |
30 | fin17 | |
|
31 | 30 | a1i | |
32 | 29 31 | jad | |
33 | 21 32 | impbid2 | |