Metamath Proof Explorer


Theorem isfin7-2

Description: A set is VII-finite iff it is non-well-orderable or finite. (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion isfin7-2 AVAFinVIIAdomcardAFin

Proof

Step Hyp Ref Expression
1 isfin7 AFinVIIAFinVII¬xOnωAx
2 1 ibi AFinVII¬xOnωAx
3 isnum2 AdomcardxOnxA
4 ensym xAAx
5 simprl ¬AFinxOnAxxOn
6 enfi AxAFinxFin
7 onfin xOnxFinxω
8 6 7 sylan9bbr xOnAxAFinxω
9 8 biimprd xOnAxxωAFin
10 9 con3d xOnAx¬AFin¬xω
11 10 impcom ¬AFinxOnAx¬xω
12 5 11 eldifd ¬AFinxOnAxxOnω
13 simprr ¬AFinxOnAxAx
14 12 13 jca ¬AFinxOnAxxOnωAx
15 4 14 sylanr2 ¬AFinxOnxAxOnωAx
16 15 ex ¬AFinxOnxAxOnωAx
17 16 reximdv2 ¬AFinxOnxAxOnωAx
18 17 com12 xOnxA¬AFinxOnωAx
19 3 18 sylbi Adomcard¬AFinxOnωAx
20 19 con1d Adomcard¬xOnωAxAFin
21 2 20 syl5com AFinVIIAdomcardAFin
22 eldifi xOnωxOn
23 ensym AxxA
24 isnumi xOnxAAdomcard
25 22 23 24 syl2an xOnωAxAdomcard
26 25 rexlimiva xOnωAxAdomcard
27 26 con3i ¬Adomcard¬xOnωAx
28 isfin7 AVAFinVII¬xOnωAx
29 27 28 imbitrrid AV¬AdomcardAFinVII
30 fin17 AFinAFinVII
31 30 a1i AVAFinAFinVII
32 29 31 jad AVAdomcardAFinAFinVII
33 21 32 impbid2 AVAFinVIIAdomcardAFin