Description: The predicate "is a Hilbert lattice", which is: is orthomodular ( K e. OML ), complete ( K e. CLat ), atomic and satisfies the exchange (or covering) property ( K e. CvLat ), satisfies the superposition principle, and has a minimum height of 4 (witnessed here by 0, x, y, z, 1). (Contributed by NM, 5-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ishlat.b | |
|
ishlat.l | |
||
ishlat.s | |
||
ishlat.j | |
||
ishlat.z | |
||
ishlat.u | |
||
ishlat.a | |
||
Assertion | ishlat1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishlat.b | |
|
2 | ishlat.l | |
|
3 | ishlat.s | |
|
4 | ishlat.j | |
|
5 | ishlat.z | |
|
6 | ishlat.u | |
|
7 | ishlat.a | |
|
8 | fveq2 | |
|
9 | 8 7 | eqtr4di | |
10 | fveq2 | |
|
11 | 10 2 | eqtr4di | |
12 | 11 | breqd | |
13 | fveq2 | |
|
14 | 13 4 | eqtr4di | |
15 | 14 | oveqd | |
16 | 15 | breq2d | |
17 | 12 16 | bitrd | |
18 | 17 | 3anbi3d | |
19 | 9 18 | rexeqbidv | |
20 | 19 | imbi2d | |
21 | 9 20 | raleqbidv | |
22 | 9 21 | raleqbidv | |
23 | fveq2 | |
|
24 | 23 1 | eqtr4di | |
25 | fveq2 | |
|
26 | 25 3 | eqtr4di | |
27 | 26 | breqd | |
28 | fveq2 | |
|
29 | 28 5 | eqtr4di | |
30 | 29 | breq1d | |
31 | 27 30 | bitrd | |
32 | 26 | breqd | |
33 | 31 32 | anbi12d | |
34 | 26 | breqd | |
35 | 26 | breqd | |
36 | fveq2 | |
|
37 | 36 6 | eqtr4di | |
38 | 37 | breq2d | |
39 | 35 38 | bitrd | |
40 | 34 39 | anbi12d | |
41 | 33 40 | anbi12d | |
42 | 24 41 | rexeqbidv | |
43 | 24 42 | rexeqbidv | |
44 | 24 43 | rexeqbidv | |
45 | 22 44 | anbi12d | |
46 | df-hlat | |
|
47 | 45 46 | elrab2 | |
48 | elin | |
|
49 | 48 | anbi1i | |
50 | elin | |
|
51 | df-3an | |
|
52 | 49 50 51 | 3bitr4ri | |
53 | 52 | anbi1i | |
54 | 47 53 | bitr4i | |