Metamath Proof Explorer


Theorem ishlat1

Description: The predicate "is a Hilbert lattice", which is: is orthomodular ( K e. OML ), complete ( K e. CLat ), atomic and satisfies the exchange (or covering) property ( K e. CvLat ), satisfies the superposition principle, and has a minimum height of 4 (witnessed here by 0, x, y, z, 1). (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses ishlat.b B=BaseK
ishlat.l ˙=K
ishlat.s <˙=<K
ishlat.j ˙=joinK
ishlat.z 0˙=0.K
ishlat.u 1˙=1.K
ishlat.a A=AtomsK
Assertion ishlat1 KHLKOMLKCLatKCvLatxAyAxyzAzxzyz˙x˙yxByBzB0˙<˙xx<˙yy<˙zz<˙1˙

Proof

Step Hyp Ref Expression
1 ishlat.b B=BaseK
2 ishlat.l ˙=K
3 ishlat.s <˙=<K
4 ishlat.j ˙=joinK
5 ishlat.z 0˙=0.K
6 ishlat.u 1˙=1.K
7 ishlat.a A=AtomsK
8 fveq2 k=KAtomsk=AtomsK
9 8 7 eqtr4di k=KAtomsk=A
10 fveq2 k=Kk=K
11 10 2 eqtr4di k=Kk=˙
12 11 breqd k=Kzkxjoinkyz˙xjoinky
13 fveq2 k=Kjoink=joinK
14 13 4 eqtr4di k=Kjoink=˙
15 14 oveqd k=Kxjoinky=x˙y
16 15 breq2d k=Kz˙xjoinkyz˙x˙y
17 12 16 bitrd k=Kzkxjoinkyz˙x˙y
18 17 3anbi3d k=Kzxzyzkxjoinkyzxzyz˙x˙y
19 9 18 rexeqbidv k=KzAtomskzxzyzkxjoinkyzAzxzyz˙x˙y
20 19 imbi2d k=KxyzAtomskzxzyzkxjoinkyxyzAzxzyz˙x˙y
21 9 20 raleqbidv k=KyAtomskxyzAtomskzxzyzkxjoinkyyAxyzAzxzyz˙x˙y
22 9 21 raleqbidv k=KxAtomskyAtomskxyzAtomskzxzyzkxjoinkyxAyAxyzAzxzyz˙x˙y
23 fveq2 k=KBasek=BaseK
24 23 1 eqtr4di k=KBasek=B
25 fveq2 k=K<k=<K
26 25 3 eqtr4di k=K<k=<˙
27 26 breqd k=K0.k<kx0.k<˙x
28 fveq2 k=K0.k=0.K
29 28 5 eqtr4di k=K0.k=0˙
30 29 breq1d k=K0.k<˙x0˙<˙x
31 27 30 bitrd k=K0.k<kx0˙<˙x
32 26 breqd k=Kx<kyx<˙y
33 31 32 anbi12d k=K0.k<kxx<ky0˙<˙xx<˙y
34 26 breqd k=Ky<kzy<˙z
35 26 breqd k=Kz<k1.kz<˙1.k
36 fveq2 k=K1.k=1.K
37 36 6 eqtr4di k=K1.k=1˙
38 37 breq2d k=Kz<˙1.kz<˙1˙
39 35 38 bitrd k=Kz<k1.kz<˙1˙
40 34 39 anbi12d k=Ky<kzz<k1.ky<˙zz<˙1˙
41 33 40 anbi12d k=K0.k<kxx<kyy<kzz<k1.k0˙<˙xx<˙yy<˙zz<˙1˙
42 24 41 rexeqbidv k=KzBasek0.k<kxx<kyy<kzz<k1.kzB0˙<˙xx<˙yy<˙zz<˙1˙
43 24 42 rexeqbidv k=KyBasekzBasek0.k<kxx<kyy<kzz<k1.kyBzB0˙<˙xx<˙yy<˙zz<˙1˙
44 24 43 rexeqbidv k=KxBasekyBasekzBasek0.k<kxx<kyy<kzz<k1.kxByBzB0˙<˙xx<˙yy<˙zz<˙1˙
45 22 44 anbi12d k=KxAtomskyAtomskxyzAtomskzxzyzkxjoinkyxBasekyBasekzBasek0.k<kxx<kyy<kzz<k1.kxAyAxyzAzxzyz˙x˙yxByBzB0˙<˙xx<˙yy<˙zz<˙1˙
46 df-hlat HL=kOMLCLatCvLat|xAtomskyAtomskxyzAtomskzxzyzkxjoinkyxBasekyBasekzBasek0.k<kxx<kyy<kzz<k1.k
47 45 46 elrab2 KHLKOMLCLatCvLatxAyAxyzAzxzyz˙x˙yxByBzB0˙<˙xx<˙yy<˙zz<˙1˙
48 elin KOMLCLatKOMLKCLat
49 48 anbi1i KOMLCLatKCvLatKOMLKCLatKCvLat
50 elin KOMLCLatCvLatKOMLCLatKCvLat
51 df-3an KOMLKCLatKCvLatKOMLKCLatKCvLat
52 49 50 51 3bitr4ri KOMLKCLatKCvLatKOMLCLatCvLat
53 52 anbi1i KOMLKCLatKCvLatxAyAxyzAzxzyz˙x˙yxByBzB0˙<˙xx<˙yy<˙zz<˙1˙KOMLCLatCvLatxAyAxyzAzxzyz˙x˙yxByBzB0˙<˙xx<˙yy<˙zz<˙1˙
54 47 53 bitr4i KHLKOMLKCLatKCvLatxAyAxyzAzxzyz˙x˙yxByBzB0˙<˙xx<˙yy<˙zz<˙1˙